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In the first part of the thesis we give background about the digital signal

processing, required throughout. We introduce the Karhunen-Loève transform

and the most commonly used optimality criteria for orthonormal uniform filter

banks.

In the second part of the thesis the definition of principal component

filter banks is given; these filter banks unify the theory of optimality of filter

banks under explicitly stated criteria. We discuss the existence of principal

component filter banks and present a study case pertaining to autoregressive

input signals and finite impulse response filter banks. We prove a theorem

on the existence of coding gain optimal finite impulse response filter banks.

For filter banks with two channels, coding gain optimal filter banks are also

principal component filter banks.

As an application of the theory of optimal filter banks we design two-

channel principal component filter banks for remote sensing hyper-spectral

vi



images. These filter banks are used to decorrelate an image, i.e. to represent

the image in a more compact form. This design strategy leads do a more

efficient compression of large images within the JPEG-2000 paradigm.
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2.3 The Discrete Karhunen-Loève Transform . . . . . . . . . . . . 42

2.4 Properties of the Karhunen-Loève Transform and Optimality
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Chapter 1

Introduction

1.1 Motivation

This work on principal component filter banks for multicomponent im-

agery was initiated in the context of developing extensions for JPEG-2000

[2, 3], the latest image compression paradigm added to a wide collection of

international standards developed by the Joint Photographic Experts Group

(JPEG). Compression of images with JPEG-2000 is a response to higher de-

mands from modern multi-media communication, internet traffic and many

similar applications where compression is indispensable. The compression per-

formance of the new standard is superior to the previous JPEG [109, 89] and

a new class of extensions is targeted at the efficient compression and manipu-

lation of large collection of images named “multicomponent” images [22].

Multicomponent images are two-dimensional images stacked together,

just as the familiar three mono-color red, blue and green images that render

the usual color photograph; two coordinates are the usual plane coordinates

and the third direction, the so-called “component” direction, characterizes the

type of image. One class of multicomponent images comprises multi-spectral

and hyper-spectral images – like remote sensing data. These images can be
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regarded as a refinement of a color photograph with more wavelengths at

which images are recorded. Multi-spectral images have a few dozen images and

hyper-spectral images have hundreds – even thousands – of images [99]. The

component direction is in this case the wavelength, or the spectral direction.

We can imagine a hyper-spectral image as a cube such as the one in Figure 1.1

showing Los Alamos.

Figure 1.1: Los Alamos hyper-spectral cube

Other major types of multicomponent imagery are 3-D volumetric data,

where the component direction is the third Euclidean coordinate. These im-

ages are tomograms – also known as computer assisted tomography (CAT)

scans – and magnetic resonance images from scientific experiments or from

medical investigations [1, 126, 69].

Multicomponent imagery requires very large storage and long trans-

mission duration; therefore, compression of such data sets is very desirable.
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There are different compression techniques depending on the type of data

[98, 110, 116, 20].

Compression is of two kinds: lossy and lossless. With lossy compres-

sion there is loss of accuracy of the reconstructed data, or distortion, whereas

with lossless compression, the reconstructed images coincide with the original

uncompressed ones. Both types of compression are widely used, depending

on the data processing tasks. JPEG-2000 gives a better resolution at low bit

rates than its previous counterpart [23, 72, 111].

Ultimately, our work is aimed at efficient compression of multicompo-

nent images, particularly, hyper-spectral remote sensing images. The com-

pression mechanism is data dependent and images without redundancy – or,

technically speaking, uncorrelated images – are subject to a more efficient

compression [40].

Hyper-spectral images are large data sets, on the order of hundreds of

megabytes [123]. There is a high correlation in the spectral direction for most

remote sensing multi-spectral and hyper-spectral images [27, 35].

Our task is to investigate the existence and design of tools that decor-

relate these images so that the data is represented in a more compact form.

When a hyper-spectral image is compressed in a lossy manner, this advantage

of data reduction should be used in applications where there is little distortion

compared to the same tasks performed on uncompressed images [59, 102].

We expect that compression of highly correlated hyper-spectral images

3



is more efficient when decorrelation in the spectral direction is applied prior

to compression, and the experiments on real data show that this is true. First

we employ the Karhunen-Loève transform – also called principal component

transform – which is known to be one of the the best decorrelators in image

processing. This transform belongs to a small class of image and general

signal processing tools, namely, the class of orthogonal transforms. We also

use a wavelet transforms for decorrelation in the spectral direction [86]. It is

desirable to find effective decorrelators among more general signal processing

tools, namely filters with memory that exploits the statistical properties of the

data.

A decorrelation tool generates a more compact representation of a signal

and packs the energy of a signal into a few information carriers. An example

is to use only a few, out of the hundreds of two-dimensional images from a

hyper-spectral data set, and have a minimum loss of features or information

for a certain image analysis task. The mathematical answer is, in general,

given in terms of principal components. Besides the Karhunen-Loève trans-

form, there are more sophisticated signal processing tools that achieve similar

decorrelation; in short, these are the principal component filter banks.

Theoretical results on principal component filter banks leave the exis-

tence issue still open for most classes of realizable filters and for arbitrary input

signals. These filter banks have the attractive quality of unifying the usual

optimality criteria for filter banks. The quest for this type of filter remains

an ongoing task. Our starting point is to study feature extraction from com-
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pressed images, and this challenging task constantly motivates us to search for

optimal filter banks and for principal component filter banks – the “ultimate”

optimal filter banks.

Our present and future research comprises two directions. One is the

existence and design of filter banks that are optimal under explicitly stated cri-

teria. The other aim of our work is to design two-channel principal component

filter banks that can be embedded in the JPEG-2000 Standard. The rational

for this is to reduce the cost of the high-dimension Karhunen-Loève transform.

A natural continuation of this research also targets a comprehensive statistical

approach to the existence of principal component filter banks. The existence

of principal component filter banks for general classes of input signals and re-

alizable classes of filters is still open; however, it is of great interest to know if

there might be particular classes of inputs and categories that have principal

component filter banks.

1.2 Preliminaries on Digital Signal Processing

Today’s demands on information exchange, communications, and anal-

ysis couple typical engineering problems with the mathematical research from

many areas: statistics, functional analysis, information theory, systems theory,

approximation theory, numerical analysis, and harmonic analysis – to name a

few. Among the variety of experts working in digital signal processing, electri-

cal engineers and mathematicians form the majority. This section presents, in

a unified manner, the notation and the elementary processing blocks that are
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the foundations of more complex mathematical and engineering studies and

practical solutions.

1.2.1 Notation

The notation used here follows Mallat [72], Strang and Nguyen [106]

and Vaidyanathan [117].

• The conjugate of a complex number z is denoted by z∗.

• Let E(·) be a matrix-valued function of a complex variable z.

– The transpose is denoted by ET and ET (z) = [E(z)]T .

– The conjugate transpose of E is denoted by a dagger: E†(z) =

[E(z)]∗T .

– The conjugate of the coefficients only, not the argument, is denoted

by: E∗(z) = [E(z∗)]∗

– The tilde notation is used for para-conjugation: Ẽ(z) = ET
∗ (z

−1)

for all complex z. Observe that Ẽ(z) = E†(1/z∗) for any z. On the

unit circle we have: Ẽ(z) = E†(z).

• The n-th term of a sequence w : Z → C is denoted by w[n], n ∈ Z.

• The n-th term of a vector sequence x is denoted by x[n] and its k-th

component by xk[n], k, n ∈ Z, k ≥ 0.

• In all equations, formulae and relations the symbol i denotes exclusively

the square root of −1.
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1.2.2 Signals

A signal is a function that communicates information about the state

or behavior of a physical system [84, 85]. Digital signal processing is widely

used in a variety of fields such as: acoustics, sonar radar, biomedical engi-

neering, seismology, speech, imagery, and other types of data communication

[14, 70, 75]. Signals are represented mathematically as functions of one or

more independent variables. The independent variable(s) may be continuous

or discrete and the functions that represent continuous signals are of continu-

ous variables, whereas the discrete signals are represented by functions defined

on discrete sets [30, 72].

In most applications a discrete signal is regarded as the discretization

of a continuous time signal realized by sampling an analog signal at certain

discrete values. Discrete signals are the subject of digital signal processing.

Discrete signals are denoted by x, y or {x[n]}n∈Z, {y[n]}n∈Z with the

meaning that x and y are functions defined on the set of integer numbers,

Z, and at each “temporal” value x[n], n denotes the time index. Sequences

describing signals are complex-valued unless otherwise specified. We use the

terms “signal” and “sequence” interchangeably.

Two signals often encountered are

• The unit-pulse.

δ[n] =

{
1, n = 0

0 otherwise
(1.1)
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• The unit-step:

U [n] =

{
1, n ≥ 0

0 otherwise

1.2.2.1 Transformed Versions of Signals

The frequency domain representation of a signal is used in many studies.

The most common transforms are the z-transform and the discrete Fourier

transform. Let x be a signal; then its z-transform X(·), is defined as

X(z) =
∑

n∈Z
x[n]z−n, z ∈ C

The discrete Fourier transform X(·) is the z-transform evaluated on the unit

circle K(0, 1) = {z = eiω, w ∈ [0, 2π]}. To show this connection between the

z -transform and the Fourier transform, eiω is used as the argument at which

the Fourier transform is evaluated. Properties of the z transform and the

Fourier transforms can be found in [41, 25, 84, 85].

1.2.2.2 Signal Models

As in many other areas of mathematics, the models for signals are cho-

sen with the purpose of developing theory well-suited for practical applications

[33, 101, 77]. For example, a model that is expressed in simple mathematical

terms can be used to design and implement a decorrelating tool that reflects

the properties of the input. In practice, when we observe signals with similar

characteristics as the model, then we have a tool that is immediately available.

Let x : Z → C be a discrete time stochastic process. At each value of

the integer argument n, x[n] is a random variable. Equivalently, we can say

8



that a signal is a sequence of random variables. Denote by E{x[n]} the mean

of the random variable x[n]. Define the autocorrelation Rxx sequence as

Rxx[n,m] = E{x[n]x∗[m]}, for all m,n ∈ Z

A process is wide-sense stationary if 1) the mean is constant E{x[n]} for all

integers n and 2) the autocorrelation Rxx[m,n] = E{x[n]x∗[m]}, depends only

on the lag, m− n [88], which is to say that

Rxx[n,m] = Rxx[n−m] = E{x[n]x∗[m]}, for all m,n ∈ Z. (1.2)

We consider only processes that are wide-sense stationary and also have a zero

mean. The variance – or energy – of a zero mean process is

σ2x = Rxx[0] = E{x[n]x∗[n]}. (1.3)

We consider only processes with finite variance. In practice all signals have

finite length; however most theoretical results assume processes defined on the

whole set of integers. From the autocorrelation sequence we determine the

power spectral density of the input via a discrete Fourier transform,

Sxx(e
iω) =

∑

k∈Z
Rxx[k]e

−iωk,

Here we assume that the correlation sequence is square summable. It can

be shown that the power spectral density is positive [33, 88, 38, 37]. A real

process has a symmetric autocorrelation sequence.

Let M be a nonnegative integer. A blocked signal is a vector sequence

x : Z → CM with components

x[n] = [ x[nM ] x[nM − 1] . . . x[nM −M + 1] ]T (1.4)
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The blocked signal is formed with every sequential subset of M elements of

the original signal. A blocked signal is a discrete time vector random process

whose components are themselves discrete random processes. Imposing the

wide-sense stationarity condition on the components of the blocked signal is

equivalent to the assumption that the signal is wide-sense cyclo-stationary (see

[97]). A wide sense stationary process x is said to be cyclo-stationary with

period M if for all integers k and n

E{x[n]} = E{x[n+ kM ]},

Rxx[n, k] = Rxx[n+M,k].

For a complex stochastic process, stationarity is defined in the sense of joint

stationarity of the real and imaginary parts of the process [30].

Let {Rxx[k]}k∈Z be the autocorrelation matrix sequence of the blocked

version, x, given by

Rxx[k] = E{x[n]x†[n− k]}, for all n ∈ Z

At lag k = 0 the matrix Rxx[0] is a real symmetric, Toeplitz matrix:

Rxx[0] =




R[0] R[1] R[2] . . . R[M − 2] R[M − 1]
R[1] R[0] R[1] . . . R[M − 3] R[M − 2]
...

...
...

. . .
...

...
R[M − 1] R[M − 2] R[M − 3] . . . R[1] R[0]




The power spectral density matrix is the discrete Fourier transform of the

autocorrelation matrix sequence

Sxx(e
iω) =

∑

k∈Z
Rxx[k]e

−i ω k (1.5)
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We list the constraints imposed on the models for the input signals

throughout. We consider discrete stochastic processes that

• have finite energy,

• have a mean of zero,

• have correlation sequence square summable,

• have power spectral density vanishing on at most a set of measure zero,

• whose blocked versions are wide-sense stationary.

We now introduce a model of autoregressive signals. Many real exper-

iments are modeled by autoregressive sequences and we use an autoregressive

signal in Chapter 4.

A discrete-time stochastic process x : Z → C is autoregressive if it

is described by

x[n] = ρx[n− 1] + w[n], n ∈ Z

where w : Z → C is a Gaussian white noise process with variance σ2w and the

correlation coefficient satisfies |ρ| < 1. This is a first-order Markov process; it

is also called a Gauss-Markov – or autoregressive(1) – process and it is denoted

by AR(1); see [40, 75]. The noise mean satisfies E{w[n]} = 0, for any integer

n, and the autocorrelation of the noise is

Rww[n, k] = E{w[n]w[k]∗} = σ2wδnk, n, k ∈ Z.
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The variances of the autoregressive AR(1) process, σ2x, and that of the noise

are related by

σ2x =
σ2w

1− ρ2
.

The mean of the input process x is zero

µx = E{x[n]} = 0, n ∈ Z.

The autocorrelation of the autoregressive AR(1) process at lag k is

Rxx[k] = ρkσ2x, and it is symmetric

Rxx[k] = Rxx[−k] = ρ|k|σ2x.

The power spectral density of the process is

Sxx(e
iω) = |T (eiω)|2Sww(e

iω), where T (eiω) = 1/(1− ρe−iω).

Consider a blocked version of the signal, described by Equation (1.4).

Without loss of generality the input variance can be normalized so that σ2x = 1.

The autocorrelation at lag zero is

Rxx[0] =




1 ρ . . . ρM−1

ρ 1 ρ . . .
...

ρM−1 . . . ρ 1




Denote

RM(ρ) =




1 ρ . . . ρM−1

ρ−1 1 ρ . . .
...

ρ−M+1 . . . ρ−1 1
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The autocorrelation at non-zero lags is

Rxx[k] =

{
ρM kRM(ρ), k > 0

ρ−M kRM(ρ)T , k < 0

and it satisfies Rxx[−k] = R
†
xx[k].

The power spectral density matrix, by Equation (1.5), is:

Sxx(z) = Rxx(0) +
∞∑

k=1

Rxx(k)z
−k +

∞∑

k=1

Rxx(−k)zk (1.6)

= Rxx(0) +RM(ρ)
∞∑

k=1

ρMkz−k +RM(ρ)T
∞∑

k=1

ρMkzk

= Rxx(0) +
ρMz−1

1− ρMz−1
RM(ρ) +

ρMz

1− ρMz
RM(ρ)T

where |ρ| < 1 and |z| = 1.

Autoregressive processes are used to model real applications and are

also used in theoretical studies in signal processing [11, 75, 16].

1.3 Systems and Transfer Functions

Given a stochastic process x we can create another process y by a

mapping H:

y = H(x),

We say that y is the output of the system H with input x. We call H a

single-input single-output system if its input and output are one-dimensional

(scalar) processes. If both the input and output are vector random processes

the system is called multi-input multi-output [88, 117, 101].

13



x y
H

Figure 1.2: A system H acting on an input signal x

A discrete time system operates on input {x[n]}n∈Z to produce

{y[n]}n∈Z

y[n] = H(x[n]), n ∈ Z

A few properties and characteristics of discrete-time systems follow [117]:

• A system is memoryless if its output at time n depends on the input at

time n only and not on past or future values of the input.

• Suppose the input sequences {x[n]}n∈Z and {u[n]}n∈Z produce the output

sequences {y[n]}n∈Z and {v[n]}n∈Z through the system H. If the output

from αx+ βu is αy + βv , for all α, β, x, u, then we say that the system

is linear.

• When the output from x[n − k] is y[n − k] for all integers k, n, and for

any signal x, we say that H is a shift invariant or translation invariant

system or time invariant.

• A system is called linear time (or translation) invariant if it is both

linear and time (or shift) invariant. We also call such a system a filter.

• A linear translation invariant system H is characterized by its impulse

response sequence, {h[n]}n∈Z, which is the output of the system H on

14



the unit-pulse δ defined in Equation (1.1). The impulse response is also

called the unit-pulse response.

• A discrete time system is called causal if the output y[n] at time n does

not depend on future values of the input sequence x[m], with

m > n, m, n ∈ Z. This condition is satisfied by a linear translation

invariant system if and only if the impulse response satisfies h[n] = 0 for

all n < 0. We also call a sequence x causal if its terms satisfy x[n] = 0 for

all n < 0. An anti-causal sequence is one whose terms satisfy: x[n] = 0

for all n ≥ 0.

• A system is called real if the output is real whenever the input is real.

For linear time invariant systems this is equivalent to the condition that

the impulse response {h[n]}n∈Z is a real valued sequence.

• A discrete system is stable if any bounded input produces a bounded

output. For linear time invariant systems, the bounded input bounded

output condition is equivalent to the absolute summability of the impulse

response
∑

n∈Z
|h[n]| <∞ .

For linear time invariant systems, the input-output relation is the con-

volution

y[n] =
∑

k∈Z
h[k]x[n− k] . (1.7)
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In the z-transform domain we have

Y (z) = H(z)X(z) , (1.8)

where H(·) is the z-transform of h, i.e. H(z) =
∑

n∈Z h[n]z
−n and H(·) is

called the transfer function of the linear time invariant system. A transfer

function can be equivalently represented as a recursive difference equation of

the form

b0yn = −
N∑

m=1

bmyn−m +
N∑

m=0

amxn−m .

A system is causal if b0 6= 0 and we can assume without loss of generality that

b1 = 1.

We only consider systems with rational transfer functions of the form

H(z) =
A(z)

B(z)
with (1.9)

A(z) =
N∑

n=0

anz
−n, B(z) =

N∑

n=0

bnz
−n, an, bn ∈ C .

When A(z) and B(z) are relatively prime we say that the system H is in

irreducible rational form and N is the order of the system.

1.3.0.3 Finite impulse response and infinite impulse response systems

A finite impulse response system is such that in its transfer function

there is only one index n for which bn is nonzero (see Equation 1.9): there

exists a unique n0 such that bn0
6= 0 and bn = 0 for all n 6= n0. Example:

H(z) = a0z
2 + a1z + a2 + a3z

−1 is a finite impulse response system.

16



If a finite impulse response causal system H(z) =
∑N

n=0 h[n]z
−n has

the coefficient h[N ] nonzero we say that N is the order of the system and that

the length of the filter is N + 1. If a system is not a finite impulse response

system then it is an infinite impulse response system. Obviously, the length of

an infinite impulse response filter is infinite. An example of an infinite impulse

response filter is:

H(z) =
1

1− az−1
.

A finite impulse response system is also called all-zero [117, 87].

1.3.1 Digital filters

Earlier we introduced a filter as a linear time-invariant system [106,

117]. Figure 1.2 shows a filter as well when H is a discrete linear translation

invariant system. The input x is passed through the filterH(·) that renders the

output y; in the time domain and in the frequency domain the input-output

relations are, as in Equations (1.7) and (1.8):

y[n] =
∑

k∈Z
h[k]x[n− k]

Y (z) = H(z)X(z)

1.3.2 Polyphase representation of a filter

Consider a filter with impulse response {h[n]}n∈Z and frequency re-

sponse:

H(z) =
∑

n∈Z
h[n]z−n .

17



We show first the two-channel polyphase representation. The previous equa-

tion can be written equivalently as

H(z) =
∑

n∈Z
h[2n]z−2n + z−1

∑

n∈Z
h[2n+ 1]z−2n .

Define

E0(z) =
∑

n∈Z
h[2n]z−n

and

E1(z) =
∑

n∈Z
h[2n+ 1]z−n

so that H(z) can be represented as

H(z) = E0(z
2) + z−1E1(z

2) .

This is a representation with two phases. In general, for a M -channel

filter bank we have [117, 107]

H(z) =





∑
n∈Z h[nM ]z−nM

+z−1
∑

n∈Z h[nM + 1]z−nM

...
+z−(M−1)

∑
n∈Z h[nM +M − 1]z−nM

or

H(z) =
M−1∑

l=0

z−lEl(z
M) ,

El(z) =
∑

n∈Z
el[n]z

−n ,

el[n] = h[Mn+ l], 0 ≤ l < M .

(1.10)
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1.3.3 Basic signal processing blocks

A digital signal processing system that operates on a discrete blocked

signal is called a multi-rate system. The three main building blocks that

are part of any multi-rate system are: the linear time invariant filters, the

down-sampler and the up-sampler. An M -fold down-sampler keeps only every

M -th element of a signal sequence and can be regarded as the constructor

of the components of the blocked version of a signal. Mathematically, this is

expressed, in the time domain and in the frequency domain, as

y[n] = x[nM ], n ∈ Z ,

Y (z) = (X(z))|↓M =
1

M

M−1∑

k=0

X(z1/Me−i 2kπ
M ) .

The M -fold up-sampler inserts M − 1 zeros between consecutive samples of a

signal; the output is

y[n] =

{
x[n/M ], if n/M ∈ Z
0 otherwise

Y (z) = (X(z)) ↑M = X(zM) .

The effect of down-sampling is aliasing: in the frequency domain the output

from a down-sampler consists of an M -fold expansion of the input in the

frequency domain, as in Figure 1.3 (a). We call X an alias-free(M) or anti-

alias(M) signal if these shifted copies do not overlap (or alias). An alias-free

signal is said to have alias-free(M) support. We define theM alias frequencies

of a frequency ω by:

ωk = ω +
2kπ

M
, ω ∈ [0, 2π], k = 0, 1, . . . ,M − 1
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Figure 1.3: Down-sampler and up-sampler

and express the alias-free (M) condition in terms of the alias frequencies as:

X is alias-free(M) if X(eiωk) is nonzero for at most one index k.

The effect of the up-sampler is called imaging and it means that M

copies of the original with anM -fold compression in the frequency domain are

produced. Figure 1.3(b) shows the up-sampler and its effects in the frequency

domain.

A particular infinite impulse response type of filter will often be en-

countered in the subsequent chapters. It is the ideal passband filter whose

frequency response is a step function as shown in Figure 1.4. This type of

filter is unrealizable and is sometimes called an “ideal” filter. The low-pass

ideal filter has the nonzero response – or the passband – in [0, π/2)∪ [3π/2, 2π]
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Figure 1.4: Ideal passband filter

and a high-pass correspondent has the frequency response in the remainder of

the spectrum. There are also ideal filters with multiple pass-bands where the

impulse response is 1 on a collection of intervals in [0, 2π].

1.3.4 Filter banks

A scheme such as the one in Figure 1.5 is called a filter bank. It is a

collection of filters, down-samplers and up-samplers acting on an input signal

x. The filters H0, H1, . . . , HM−1 form the analysis filter bank; the synthe-

sis filter bank consists of the filters F0, F1, . . . , FM−1. The input signal x is

sent through the analysis filters that output processes xk, k = 0, 1, . . . ,M − 1.

The M -fold down-samplers render the signals vk’s. The dots in the figure

represent possible intermediate processing tasks, such as transmission, com-

pression; some of these tasks may induce distortion, in which case we simply

call these processes simply quantizers (see Section 1.4). After processing, the

signal is up-sampled, resulting in the processes uk that are filtered by the filters

21



Fk, k = 0, 1, . . . ,M − 1. Finally the output signal x̂ is formed by summing

the synthesized components.
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Figure 1.5: Standard form of a uniform maximally down-sampled M-channel
filter bank.

A filter bank has the perfect reconstruction property when the output

is a scaled and shifted version of the input, i.e., there exists an integer l such

that, for all integers n:

x̂[n] = Cx[n− l], C ∈ C \ {0} . (1.11)

Values of 1 for C and of zero for l are possible in a perfect reconstruction

filter bank. Perfect reconstruction assumes no loss of information (distortion).

Therefore, in a setting with a perfect reconstruction filter bank and interme-

diate processing tasks the error comes only from the intermediate processing

and the distortion is viewed as quantization noise.
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1.4 Coding Theory and Quantization

Signals are communicated over digital channels, often at different trans-

mission rates, and therefore a signal must be transformed or coded for efficiency

and compatibility. Source coding is the term used for this process.

A coding system is a mapping that specifies how the encoder transforms

source symbols or groups of such signals into a new set of symbols. The

decoder processes the coded sources to retrieve the initial information. The

term “code” is used by information theorists and is usually associated with a

lookup table or a dictionary listing the pairs of input/output words or symbols

[94, 40, 44].

1.4.1 Entropy coding

In a fixed rate coder a constant number of channel bits per time unit is

produced by the encoder and processed by the decoder. In certain communica-

tion systems fixed rate operation is not satisfactory if the data source has wide

variations in activity. For example sampled speech at fixed rate is redundant

in moments of silence. A variable rate code is a solution to efficient encoding.

An entropy coding technique is an efficient variable rate encoder that takes

advantages of statistical redundancies in the source whether by prior knowl-

edge or by building a model as it scans the source. Discrete data is encoded

into variable length codewords in an invertible manner. The entropy coding

is also called noiseless coding, lossless coding, or data compaction coding. The

term data compression means entropy coding. A typical example of entropy
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coding is the Morse code: letters with higher occurrence (probability) have

corresponding shorter codewords than less probable letters.

Let X be a source whose symbols occur with probability pk. The en-

tropy of this source is defined as

H(X) = −
∑

1≤k≤M

pk log2 pk

and gives a lower bound on the average bit rate required to code the source.

This result is a theorem of Shannon who set the foundations of information

theory [40]. However, the information conveyed by Shannon’s theorem does

not lead to an algorithm for efficient coding [128, 40, 44, 56].

Figure 1.6 shows a high level structure of a transform coder. A trans-
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Figure 1.6: High level structure of a transform encoder

form maps the source signal into a more compact representation. This process

is usually a decorrelation. The transform is invertible in the sense that in the

absence of a quantizer the coded source can be reconstructed without loss of

information. The quantizer maps the transformed signal into a smaller set

of code words so that the entropy encoder is more efficient. The distortion

that arises in a compression process is due solely to the quantization process.

The JPEG-2000 Standard generates lossless compression in the presence of a

transform that maps integers to integers [24, 109].
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In image processing, lossy coding is the most commonly encountered

type of compression [5, 14, 20, 44]. Lossless coding is desired by every user of

a coding system, although it doesn’t always render a satisfactory compression

ratio. The perceptually lossless coding, i.e. lossy coding that seems lossless to

human auditory or visual systems, is a good trade-off. See [20, 129, 55, 5] for

examples of lossy coding strategies that are perceptually lossless.

1.4.2 Quantization theory

Coding processes that involve distortion or loss of information are mod-

eled by a quantizer. The translation of physical experiments into computa-

tional systems, like the conversion from analog to digital, suffers from quanti-

zation.

A quantizer (Figure 1.7) can be viewed as the composition of two maps:

an encoder and a decoder

E : R → I ⊂ N

D : I → C ⊂ Q

Q = D ◦ E

The encoder E assigns to each real number an index (bin number) in I that

indexes the bin containing x. The decoder D takes the bin index and returns

the quantized value which is some fixed value from each bin:

Q(x) = D(E(x)) = D(k) = y
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Figure 1.7: (a) Block diagram for quantization; (b) the step nonlinear be-
haviour of a simple uniform quantizer.

Unlike linear systems, for which there exists a well established theory, such

understanding is unavailable for even simple nonlinear quantization processes

[40].

We now introduce concepts pertaining to the performance of a quan-

tizer. The most commonly encountered distortion measure between a number

x and an approximation of it, x̂ = Q(x), is

d(x, x̂) = |x− x̂|2 .
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A more general expression for the distortion is

dm(x, x̂) = |x− x̂|m

for any m > 0. The cases when m is 2 or 1 define the squared error or the abso-

lute error, respectively. Most informative measures take into account statistics

such as the mean-square error, or the average distortion

d = E{[x−Q(x)]2} =
∫

R
[x−Q(x)]2fX(x)dx

where fX(x) is the probability density function of x. A widely used measure

of distortion is the signal-to-noise ratio (SNR) measured in decibels (dB) and

defined as

SNR = 10 log10
E{x2}

E{[x−Q(x)]2} .

1.4.3 Rate allocation

Next we state the problem of optimal allocation and show how in-

terdependent the distortion measure and the quantization are. Consider a

set of M random variables with zero mean and variances σ21, σ
2
2, . . . , σ

2
M , and

with known probability density function. Suppose we seek to quantize these

variables, given a particular distortion measure and a target average num-

ber of bits per sample – also called “bit budget”. The problem of optimal

bit allocation is the following: find the bit budgets (or rates) b1, b2, . . . , bM

that minimize the overall distortion as a function of the bit allocation vector

b = [b1, b1, . . . , bM ]T , subject to the constraint that the average rate is limited
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to a given quota:
∑M

k=1 bk ≤ B. Given a model for distortion as a function of

rates, the solution of the optimal bit allocation problem is rendered by the La-

grange multipliers strategy [109, 40, 100]. In this way, the distortion measure

influences the quantization strategy.

We can define a discrete stochastic process q : Z → C by

q[n] = Q(x[n])− x[n]

called the quantization error or the noise source associated with the quan-

tizer. High resolution quantization theory addresses the issues related to the

modeling of quantization distortion. High resolution – or high rate – quan-

tization is understood to mean that the average distortion is lower than the

input variance, σ2x

d¿ σ2x = E{(x− µx)
2} .

A value of the signal-to-noise ratio of 10 dB is considered the borderline be-

tween low and high resolution [40].

1.4.4 High rate quantization theory

We next describe the model of a high resolution quantizer. Assume

that the input signal is such that within each quantizer bin the probability

density function is approximately constant. In other words, we assume that the

quantization bins are fine enough that the input probability density function

is modeled reasonably well by a step function defined in the quantization bins.

Denote as in the previous section by σ2x the input signal variance of a signal x

that is input to a quantizer Q.
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The variance of the quantizer noise is expressed in this case by the

standard noise model

σ2q = c2−2bσ2x

where b is the number of bits at which the channel operates and c is a constant

associated with the probability density function of the input. The standard

noise model is used very widely to estimate distortion [40, 117].

1.5 Coding schemes

1.5.1 Transform coding

Suppose a block of M consecutive samples of a stationary random pro-

cess or a vector random variable are subject to coding and a fixed number

of bits is specified. In general this signal has correlated components, which

implies that the representation of the data is inefficient [40]. The signal can be

pre-processed so that the encoder receives uncorrelated components. Suppose

a transform acts on the input signal as

y[n] = Tx[n] (1.12)

The bit allocation problem is now solved for the transformed signal y. The

quantizers are Q0, Q1, . . . , QM−1. Such a scheme is called a transform coder

(see Figure 1.8). The transform matrix T ∈ CM×M is usually unitary. In most

practical applications the transform is real orthogonal.

The performance of a transform coder is expressed by the coding gain

(see [40, 117]). The coding gain of a transform coder under the high-bit rate
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Figure 1.8: Transform coder/decoder

assumption is given by the relation

GTC =
σ2x

(
∏M

k=1 λ
2
yk
)1/M

(1.13)

where σ2x is the input variance and λ2yk , k = 1, 2, . . . ,M are the eigenvalues of

the auto-covariance matrix of the transformed signal y. An optimal transform

coder is presented in the next chapter. The performance of a transform coder

depends on the choice of the transform for a given input signal. For details

see [72, 71, 125].

1.5.2 Sub-band coding

A strategy that is similar to the transform coder but uses filters with

memory is called sub-band coding. A sub-band coding scheme is shown in

Figure 1.9. A signal is decomposed or analyzed in components that are tailored

to the specific quantization problem for which the sub-band coder is sought to

be optimal. The components of the signal are called sub-bands. After analysis,
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Figure 1.9: Sub-band coder

a quantization takes place; reconstruction of the signal is accomplished by

the synthesis filter bank. Filter banks and sub-band coders are viewed in

the digital processing communities as closely related. And that is because

a perfect reconstruction filter bank without a quantizer makes little sense in

practice. However, there are applications where the filter banks do not have

the perfect reconstruction property – it depends on the practical problem [120].

We restrict our discussion to perfect reconstruction filter banks.

There are advantages of the sub-band coding strategy over the trans-

form coder. Detailed discussion can be found in [125, 61, 10, 127]. A sub-band

coder is characterized by its coding gain, defined as the coding gain of the

transform coder [117]. In general, a sub-band coder renders a higher coding

gain than a transform coder. The coding gain of a sub-band coder is

GSBC =
(1/M)

∑M−1
k=0 σ

2
vk

(
∏M−1

k=0 σ
2
vk
)1/M

(1.14)

where σ2vk , k = 0, 1, . . . ,M − 1, are the sub-band variances from the analysis

bank. The expression for the coding gain of a sub-band coder is defined as the
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ratio

GSBC =
εdirect
εSBC

(1.15)

where εSBC is the mean-square value of the reconstruction error x̂(·)− x(·) in

the presence of a transform or filter bank and εdirect is the mean-square value

of the direct quantization error (roundoff quantization without any transform

applied prior to quantization), with the same average bit rate b. However,

regardless of the quantization process, the coding gain of a filter bank is also

defined by Equation (1.14). The transform coder can be viewed as a particular

case of a sub-band coder and that justifies the term “sub-band signals” used

for the output of a transform in a transform coding scheme.

1.6 Remarks

Above we introduced the essentials of digital signal processing. Our

main intention is to familiarize the reader with the notions of filter banks,

quantization, sub-band coding, etc. We do not introduce in-depth image com-

pression strategies, although, the tools presented are intended to assist effi-

cient compression of large images. The actual standard compression paradigm

is presented by Taubman and Marcellin in [109] and for coding theory see

[94, 40]. For further background material in digital signal processing and filter

bank theory see [85, 117, 106, 54, 127, 72, 56, 29].

1.7 Thesis Outline

Here we summarize the content of the remaining chapters.
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Chapter 2: The Karhunen-Loève Transform

The use of the Karhunen-Loève transform dates back to the first digital sig-

nal processing problems. We use this transform extensively to decorrelate

multicomponent images prior to compression. For hyper-spectral images, the

Karhunen-Loève transform is the best decorrelator [92, 54, 59, 21]. How-

ever, the Karhunen-Loève transform is not suited in transform coder schemes

with non-Gaussian input such as medical three-dimensional volumetric im-

ages. This discovery motivated a deeper study of the transform. We describe

the continuous and discrete Karhunen-Loève transform, and optimality and

computational issues.

Chapter 3: Filter Banks and Optimality Issues

This chapter is intended to familiarize the reader with the filter bank theory

and the usual criteria of optimality of filter banks used by the digital signal

processing community [118]. Any sequence of image processing tasks that

starts with a Karhunen-Loève transform is, in general, subject to an upgrade

using a filter bank. This background is essential to the understanding of the

existence and design of a filter bank that exhibits properties similar to the

Karhunen-Loève transform with respect to decorrelation. However, there is

an optimality criterion, the coding gain, that is very widely used; it expresses

the ability of a filter bank to render a signal that is susceptible to efficient

compression, similar to the principal component criterion. This chapter focuses

on optimality in the coding gain sense [63, 119]. The classes of filters studied

are limited to perfect reconstruction orthonormal filter banks. The theory
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developed by Vaidyanathan [118] pertains to unrealizable ideal filter banks;

however it is valuable in the performance analysis of realizable filter banks.

Chapter 4: Principal Component Filter Banks

We begin with the mathematical setting for optimality study from the prin-

cipal component perspective. The results from the previous chapters on the

Karhunen-Loève transform and filter bank theory are now woven into a more

powerful optimality concept, in the principal component sense. While there

are principal component filter banks in the class of unrealizable filter banks,

there is no definitive answer to the question of existence of these filters in the

class of realizable filter banks. We discuss the existence of principal component

filter banks based on the results in the literature and our experiments.

In a survey paper Akkarakaran and Vaidyanathan [10] state that there

are no coding gain optimal filter banks for realizable filters. We study the

existence of principal component filter banks for a model signal and realizable

filter banks in response to both [10] and a study case that was incorrectly set by

Kirac and Vaidyanathan in [62]. We prove that in any class of realizable filter

banks there exist filter banks that are optimal with respect to the coding gain.

We also present an algorithm to find these optimal filter banks analytically.

These are our main contributions to the theory and design of optimal filter

banks. On the practical side, our results address the issue of existence and

design of principal component filter banks for simple structures with only two

filters, or two channels. These are the filter banks supported by JPEG-2000

Standard, hence our filter bank design has a broad range of applicability.
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Chapter 5: Applications of Optimal Filter Banks to Hyper-spectral Imagery

Processing

The compression of hyper-spectral images benefits from the use of the Karhunen-

Loève transform as a decorrelator in the spectral direction. We show in [86]

that there are applications from the class of pattern recognition problems

where data exploitation performed on compressed data is almost as good as

tasks performed on uncompressed data. A hyper-spectral image with a size of

150MB was compressed with a ratio of 128 resulting in a compressed image

with a size less than 1 percent of the initial data. Some widely used feature ex-

tractions matched within 99.5% the features retrieved from the uncompressed

data. The applicability of feature extraction from highly compressed images is

primary in real-time applications when transmission time and bandwidth are

essential for good information exchange.

Principal component filter banks always exist for two-channel filter

banks. Once the power spectral density of the input is known, an optimal

filter bank can be found analytically using symbolic computation packages.

We design and compare the performances of two-channel principal component

filter banks and the Karhunen-Loève transform for a class of hyper-spectral

images.
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Chapter 2

The Karhunen-Loève Transform

2.1 Motivation

This transform was introduced originally by Karhunen [58] and Loève

[68] as a series expansion for continuous random processes. The optimality of

this transform in the mean square sense is exhibited both for continuous and

discrete time signals.

For random sequences, Hotelling [49, 50] discusses what was first called

a method of principal components, which in essence is a discrete version of the

Karhunen-Loève series expansion; that is why the Karhunen-Loève transform

is also called the Hotelling transform, or principal component transform in

many scientific communities [92, 17, 99]. The principal component transform

– or principal component analysis – is also closely related to other decorrelation

techniques, such as independent component analysis [64, 52].

In a coding scheme, the Karhunen-Loève transform is optimal with

respect to the coding gain defined in Equation (1.13). In remote sensing ap-

plications this transform is used to analyze images in a feature space that

is free of redundancies; it can also be used for color contrast enhancement.

Among the many applications of the Karhunen-Loève transform in computer
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vision we mention pattern recognition, object tracking and motion estimation.

The Karhunen-Loève transform is very widely used; however it poses

two major challenges to users. First, it is a signal dependent transform since

it depends on the auto-covariance matrix; thus the basis has to be computed

separately for every input. Second, it is a very expensive transform: no struc-

ture can be assumed for the covariance matrix other than being symmetric

and positive definite. Therefore no fast algorithm can be used; the cost of

constructing the Karhunen-Loève transform is of order O(N 3).

We present the continuous and the discrete versions of the transform

and its use in signal coding. We also outline alternate strategies to overcome

the high cost. Theoretical issues are discussed further in Chapter 4 from the

perspective of filter bank optimality.

2.2 The Continuous-Time Karhunen-Loève Transform

We follow the literature and limit the presentation to the real case [75].

For the complex case all the results are similar. The continuity concept used

in this section is defined next.

Definition 2.2.1. The random process x is continuous at t0 in the mean-

square sense if

l.i.m.t→t0x(t) = x(t0)

where l.i.m. denotes the limit in the mean:

lim
t→t0

E{[x(t)− x(t0)]
2} = 0 . (2.1)
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Consider a real-valued continuous-time stochastic process x : [a, b] → R

with a finite mean-square value (or finite variance) E{x2} <∞ and with zero

mean E{x(t)} = 0 for all t ∈ [a, b] . We seek a series expansion that represents

the stochastic process in the mean as in Definition 2.2.1

x(t) = l.i.m.M→∞

M∑

k=1

xkψk(t) (2.2)

or, equivalently, from Definition 2.2.1

lim
M→∞

E{[x(t)−
M∑

k=1

xkψk(t)]
2} = 0, t ∈ [a, b] . (2.3)

The orthonormal basis ψk(t); k = 1, 2, . . . in Equation (2.1) will be de-

termined from the properties of the stochastic process as follows. The coeffi-

cients xk will be the Fourier coefficients

xk = 〈x, ψk〉 =
∫ b

a

x(t)ψk(t)dt .

Let us assume that E{xk} = 0, k = 1, 2, . . . We require that the coefficients

of the expansion be uncorrelated:

λlδkl = E{xkxl} (2.4)

= E{〈x, ψk〉〈x, ψl〉}

= E

{(∫ b

a

x(t)ψk(t)dt

)(∫ b

a

x(u)ψl(u)du

)}

= E

{∫ b

a

ψk(t)

∫ b

a

x(t)x(u)ψl(u)dudt

}

=

∫ b

a

ψk(t)

(∫ b

a

E{x(t)x(u)}ψl(u)du

)
dt
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The kernel of the integral operator in Equations (2.4) is the symmetric auto-

correlation function

Rxx(t, u) = E{x(t)x(u)} (2.5)

and we rewrite the condition in Equation (2.4) as

λlδkl =

∫ b

a

ψk(t)

(∫ b

a

Rxx(t, u)ψl(u)du

)
dt . (2.6)

Equation (2.6) holds if

∫ b

a

Rxx(t, u)ψl(u)du = λlψl(t) . (2.7)

The solutions ψl(t), l = 1, 2, . . . of the integral Equation (2.7) form the or-

thonormal basis that guarantees that the coefficients of the expansion are

uncorrelated. The integral operator in Equation (2.7) has eigenfunctions

ψl(t), l = 1, 2, . . . with the associated eigenvalues λl, l = 1, 2, . . . .

The kernel Rxx(·, ·) is a covariance function and therefore it is symmet-

ric and nonnegative definite. With the hypothesis that the variance of the

input is finite, the covariance function satisfies [37, 112]

∫ b

a

∫ b

a

R2xx(t, u)dtdu ≤
(∫ b

a

E{x2(t)}dt
)2

<∞

We now invoke results from linear operator theory [104, 93].

• There exist at least one square integrable function ψ(·) and a real number

λ that satisfy Equation (2.7).

• if ψ(·) is a solution of Equation (2.7) then cψ(·) is also a solution and

the eigenfunctions can thus be normalized.
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• Eigenfunctions corresponding to distinct eigenvalues are orthogonal to

each other.

• The set of eigenfunctions is countable and they all are bounded almost

everywhere.

• If ψ1(·) and ψ2(·) are eigenfunctions associated with the same eigenvalue

λ then c1ψ1(·) + c2ψ2(·) is also an eigenfunction associated with λ.

• For any eigenvalue λ there is at most a finite number of linearly inde-

pendent eigenfunctions.

• If the process x is continuous at each t ∈ [a, b] in the mean-square sense,

then the kernel Rxx(·, ·) is continuous on [a, b]× [a, b] – see [88]. Mercer’s

Theorem (see Riesz and Sz.-Nagy [93] and Brislawn [18]) states that the

kernel Rxx(·, ·) can be expanded in the series

Rxx(t, u) =
∞∑

k=1

λkψk(t)ψk(u), a ≤ t, u ≤ b

and the convergence of the series is uniform for all t and u in [a, b].

• The sum of the eigenvalues is the expected value of the energy of the

zero mean process x(·) in the interval [a, b]

E

{∫ b

a

x2(t)dt

}
=

∫ b

a

Rxx(t, t)dt =
∞∑

k=1

λk .

Now we show that the convergence in the mean from Equation 2.3 holds.

Denote by εM(·) the expected value of the mean square error when x(·) is
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approximated by the first M terms

εM(t) = E

{
[x(t)−

M∑

k=1

xkψk(t)]
2

}

Evaluate

εM(t) = Rxx(t, t)− 2E

{
x(t)

M∑

k=1

xkψk(t)

}
+ E

{
M∑

k=1

M∑

l=1

xkxlψk(t)ψl(t)

}

= Rxx(t, t)− 2E

{
x(t)

M∑

k=1

(

∫ b

a

x(u)ψk(u)du)ψk(t)

}

+
M∑

k=1

λkψk(t)ψk(t)

= Rxx(t, t)− 2
M∑

k=1

(

∫ b

a

Rxx(t, u)ψk(u)du)ψk(t) +
M∑

k=1

λkψk(t)ψk(t)

= Rxx(t, t)−
M∑

k=1

λkψk(t)ψk(t)

Mercer’s Theorem guarantees that the last sum converges uniformly toRxx(t, t)

for t in [a, b] as M approaches infinity. We proved that

lim
M→∞

εM(t) = 0, uniformly for t ∈ [a, b] .

In practice, solving the integral equation to determine the basis is a diffi-

cult task; therefore the continuous Karhunen-Loève transform is only valuable

as a theoretical tool.

We can evaluate onlyM terms in Equation (2.2) and obtain an approx-

imation of the signal to be represented. The approximation error has mean

equal to the sum of the eigenvalues not used in the approximate representation
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– and that sum is finite – therefore we consider the largest eigenvalues for a

finite representation.

2.3 The Discrete Karhunen-Loève Transform

In digital signal processing the discrete version of the Karhunen-Loève

transform is used [75, 72, 54, 125, 88].

Consider a real-valued M -dimensional vector random process.

x = [x1 ... xM ]T , x ∈ RM .

We seek an orthogonal transform that is optimal in the mean-square error

criterion. Let U be an orthogonal transform given by

UT = [ϕ1 ϕ2 ... ϕM ]

where the ϕk are vectors in RM that form an orthonormal basis:

〈ϕk,ϕl〉 = δkl or U
TU = UUT = I. Let y ∈ RM be the transform of x

y = Ux .

Equivalently

x = UTy = [ϕ1 ϕ2 ... ϕM ]y

or

x =
M∑

k=1

ykϕk . (2.8)

The vector y can be regarded as the (vector of) coordinates of x in the ba-

sis UT . We retain a subset {y1, y2, ..., yP}P≤M of the components of y and
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estimate x. For the missing M − P components of y we seek constants

bk, P + 1 ≤ k ≤M and obtain

x̂(P ) =
P∑

k=1

ykϕk +
M∑

k=P+1

bkϕk

where x̂(P ) is the estimate of x. The error vector ∆x induced by replacing

the components yk with bk, k = P + 1, ...,M , is

∆x = x− x̂(P ) =
M∑

k=P+1

(yk − bk)ϕk .

The mean-square error is

ε(P ) = E{‖∆x‖2} = E{(∆x)T (∆x)}, or, equivalently,

ε(P ) = E

{
M∑

k=P+1

M∑

l=P+1

(yk − bk)(yl − bl)ϕ
T
kϕl

}
,

which simplifies to

ε(P ) =
M∑

k=P+1

E{(yk − bk)
2} . (2.9)

We now seek an optimal choice of ϕk and bk that minimizes ε(P ) for all

P = 1, 2, . . . ,M . This is optimality in the mean-square sense. Another term

used is optimal mean-square projection error sense. These optimal entities are

found in two steps:

Step 1. The optimum bk’s are determined from the condition

∂

∂bk
E{(yk − bk)

2} = 0 .

From

∂

∂bk
E{(yk − bk)

2} = −2(E{yk} − bk)

43



we obtain the bk’s as

bk = E{yk} .

From yk = ϕT
kx we have bk = ϕT

kE{x} or

bk = ϕT
kµ, k = 1, 2, . . . ,M

where µ denotes the expectation of x, i.e., µ = E{x}. The quantities yk − bk
are scalars and we can write alternatively in the form

ε(P ) =
M∑

k=P+1

E{(yk − bk)(yk − bk)
T}

=
M∑

k=P+1

ϕT
kE{(x− µ)(x− µ)T}ϕk .

Denote by Cxx the auto-covariance matrix of x

Cxx = E{(x− µ)(x− µ)T} .

and write the error as

ε(P ) =
M∑

k=P+1

ϕT
kCxxϕk .

Step 2. The optimum ϕk must minimize ε(P ) and obey the orthonormality

constraint ϕT
kϕl = δkl. We use the method of Lagrange multipliers: minimize

ε̂(P ) = ε(P )−
M∑

k=P+1

λk[ϕ
T
kϕk − 1]

=
M∑

k=P+1

[ϕT
kCxxϕk − λk(ϕ

T
kϕk − 1)]
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with respect to ϕk where the λk’s are the Lagrange multipliers. We have

∇ϕ
k
[ϕT

kCxxϕk] = 2Cxxϕk and

∇ϕ
k
[ϕT

kϕk] = 2ϕk

and thus

∇ϕ
k
[ε̂(P )] = 2Cxxϕk − 2λkϕk

or equivalently

Cxxϕk = λkϕk, k = 1, ...,M . (2.10)

The equation above tells us that each ϕk is the eigenvector of the covariance

matrix Cxx and λk is the corresponding eigenvalue. Finally, when the eigen-

values are ordered decreasingly, the minimum mean-square error, εmin(·), is

εmin(P ) =
M∑

k=P+1

λk . (2.11)

The expansion defined in Equation (2.8) is called the Karhunen-Loève expan-

sion.

This eigenvalue problem has the following properties:

1. Cxx is a covariance matrix, therefore it is positive semi-definite; hence

the eigenvalues λk are real and non-negative.

2. Eigenvectors that belong to distinct eigenvalues are orthogonal to each

other.

3. Multiple eigenvalues have linearly independent eigenvectors and they can

be chosen to be orthogonal to each other.
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The normalized eigenvectors comprise the basis of the Karhunen-Loève

transform. For the complex case the covariance matrix:

Cxx = E{xx†}

is also symmetric and non-negative definite [38, 37]. The Karhunen-Loève

transform matrix U is unitary and satisfies UU † = I. We cannot conclude

that the imaginary and real part are uncorrelated; we can only say that

E{yky∗l } = λkδkl, k, l = 1, 2, . . . ,M.

The covariance matrices of the input signal and the transformed signal

are related as

UCxxU
† = Λ ,

Cxx = U †ΛU .

The matrix Λ is the diagonal matrix of eigenvalues of the covariance matrix.

Λ = diag {λ1, λ2, . . . , λM} .

If the input vector process x has zero mean (see Section 1.2.2) the

Karhunen-Loève transform diagonalizes the autocorrelation matrix of the pro-

cess.

2.4 Properties of the Karhunen-Loève Transform and

Optimality Issues

A similar approach as for the continuous case can be considered for

the discrete case. We may define the discrete Karhunen-Loève transform by
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requiring that the components of the output vector process be uncorrelated.

The output auto-covariance matrix is then diagonal and we conclude that

the transform we seek must diagonalize the input auto-covariance matrix. We

then show that an approximation in such a basis is optimal in the mean-square

sense using the same Lagrange multipliers technique . This is the approach

presented by Mertins [75] and Jain [54].

Brillinger [17] opens a new approach to signal processing optimization

techniques. The aim is to approximate a series by a filtered version of itself

with a filter having reduced rank. This is the principal component approach

for time series analysis. For transform coding schemes such an approach is an

optimization in the mean square sense for a basis restriction [54].

2.4.1 Distribution of variances and the minimal geometric mean

property

Proposition 2.4.1. Let a Gaussian random vector process be input to unitary

M ×M transforms and assume that the variances of the output transformed

signal are ordered decreasingly. Then the Karhunen-Loève transform outputs

the largest first P variances, for P = 1, 2, . . . ,M .

Proof. Let T be an arbitrary unitary transform and U be the Karhunen-Loève

transform of an input M -dimensional zero mean Gaussian discrete random

vector x. Let y be the output from the transform T ,

y = Tx .
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Define the average variances component-wise and order them decreasingly:

σ2k = E{|yk|2}, σ21 ≥ σ22... ≥ σ2M .

Let P be in {1, 2, . . .M} and denote the partial sum of output variances (or

partial energy)

SP (T ) =
P∑

k=1

σ2k .

We write the partial energy in terms of the input and the arbitrary transform

SP (T ) =
P∑

k=1

E{[(Tx)(Tx)†]k,k}

=
P∑

k=1

[TCxxT
†]k,k

= tr(IPT
†CxxT )

where

Ip = diag{1, 1, . . . , 1, 0, 0, . . . , 0}

is obtained by bordering with zero the identity matrix of order P . By the

results of Section 2.3, the sum SP (T ) is maximized when T is the Karhunen-

Loève transform of the input.

Next we show the minimal geometric mean property of the Karhunen-

Loève transform: for any positive semidefinite matrix C ∈ RM×M we have

(see [48])

detC ≤
M∏

k=1

ckk

48



where the ckk’s are the diagonal elements of C. Equality holds when C is

diagonal. Since the Karhunen-Loève transform leads to a diagonal covariance

matrix of the representation, we conclude that in fact Karhunen-Loève trans-

form leads to random processes with a minimal geometric mean of the vari-

ances. From Equation 1.13, we therefore conclude that the Karhunen-Loève

is the optimal transform for transform coding schemes [54, 40, 56, 117].

2.4.2 Uniqueness of the Karhunen-Loève transform

The Karhunen-Loève basis is not unique if eigenvalues of multiplicity

greater than 1 are present. For the special case when Cxx is the covariance

matrix of a white noise input process with

Cxx = σ2I ,

then λ1 = λ2 = ... = λM = σ2. A white noise process can be optimally

approximated with any orthogonal basis.

2.5 A First Quantization Result for Optimal Sub-band

Coding

Huang and Schultheiss [51] show that the Karhunen-Loève transform

is the optimal transform coder under mild assumptions on the quantization

noise sources. Their study shows that optimization results for coding gain are

not guaranteed if the input samples do not have a jointly Gaussian probability

distribution. The results in [51] are the first ones to show that the performance

of a decorrelation transform is independent of the loss due to quantization.
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Figure 2.1: Transform coder with Max-Lloyd quantizers.

We refer to Figure 2.1. The assumptions made are the following:

• The transform coder T has as input a signal x modeled as a Gaussian

M- dimensional real random variable with zero mean.

• The matrix T that operates on x yields an M -dimensional uncorrelated

random variable y. Note that the random variable y is also Gaussian

because the input is Gaussian and the transform T is linear. In fact, the

random variable y has components that are not only uncorrelated but

also independent [88, 52].

• The sub-band processors Pk are bk-bit Lloyd-Max quantizers [40] and

they are optimal in the sense that the quantized sub-band ŷk is orthogo-

nal to the quantization error εk = yk − ŷk; that is E{εkŷk} = 0. No high

bit-rate is assumed.

• The quantizer Q is such that the quantization error is minimized subject

to an overall fixed bit budget [40, 67, 66, 74].

• Sub-bands are numbered such that the variances are ordered decreasingly

and so are the bit budgets allowed for each sub-band signal quantization.
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The Karhunen-Loève transform enters in the area of transform coding

as the solution to an optimization problem. Given a fixed bit budget b the

problem is to find appropriate matrices T and S and bit budget values

bk, k = 1, 2, ...,M for each channel such that the mean-square error E{(x−

x̂)T (x− x̂} is minimized. We list the results from [51].

• The matrices T and S are inverse to each other – this is universally the

actual choice because it renders prefect reconstruction in the absence of

a quantizer.

• Denote by Cxx the autocorrelation matrix of the input and let

λ1, λ2, . . . , λM be its eigenvalues. The matrix T that minimizes the mean

square error is the Karhunen-Loève transform of the input

T = UT

where

UTCxxU = Λ

and as in Section 2.3 the eigenvalues λk are ordered decreasingly. This

choice of the matrix U is optimal for any number of bits bk allocated on

the k-th channel satisfying b1 ≥ b2 ≥ ... ≥ bM with the average bit rate

b satisfying:
∑M

k=1 bk =Mb.

• The best choice for the kth bit budget bk is given approximately by

bk = b+
1

2
log2

λk

(
∏M

k=1 λk)1/M
.
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Some of the bit budgets bk’s may be negative or non-integer, and to

overcome this difficulty iterative rate allocation methods that truncate

negative bit budgets and reallocate bits are used in practical applications.

• A lower bound on the mean square error is

εmin = 2−2b(
M∏

k=1

λk)
1/M

When the Karhunen-Loève transform was first introduced, there were

no constraints set on the input process. Under a linear transform, it is only

a Gaussian input that is mapped into a Gaussian output. The process of

selecting a quantizer is influenced by the probability density function of the

input to the quantizer. Hence if the input to the transform is not Gaussian,

the statistics of the output of the transform – and the input to the quantizer

– are often not known. Optimization in the non-Gaussian case appears to be

a difficult problem.

The Karhunen-Loève transform only takes into account the second or-

der statistics of the process, hence it is optimal only for Gaussian input in

coding schemes. Feng and Effros [39] show that the Karhunen-Loève trans-

form is not the optimal orthogonal transform for coding gain if the input has

a uniform distribution. A similar observation can be found in Mallat [72].

Further details of the Karhunen-Loève transform are given in Chap-

ter 4.
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2.6 Threshold Representation

The Karhunen-Loève transform also minimizes E{P}, the expected

number of transform coefficients required for their energy to meet a speci-

fied threshold [12]. Consider the Karhunen-Loève expansion of a zero-mean

random process x on the interval a ≤ t ≤ b as in Equation (2.1)

x(t) = l.i.mM→∞

M∑

k=1

xkψk(t)

with the basis functions ψk, k = 1, 2, . . . given by Equation (2.7)

∫ b

a

Rxx(t, u)ψl(u)du = λlψl(t) .

Consider a finite-dimensional approximation to x,

x̃M(t) =
M∑

k=1

xkϕk(t) (2.12)

in which ϕk(t), k = 1, 2, . . . ,M form a complete orthonormal set and the xk are

the corresponding generalized Fourier coefficients [25] for the representation.

Define a random variable R0 as

R0 =

∫ b

a

x2(t)dt

and let the random variables RM , M = 1, 2, . . . be the integral-square trun-

cation error from the expansion in Equation (2.12) and with a zero-mean

hypothesis on x it follows that

RM = R0 −
M∑

k=1

x2k =

∫ b

a

[x(t)−
M∑

k=1

xkϕk(t)]
2dt .
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For a fixed M , the mean truncation error is minimized if the basis functions

{ϕk} of Equation (2.12) satisfy the Karhunen-Loève basis restriction (see [54]).

This solution depends only on the correlation operator Rxx(·, ·) from Equa-

tion (2.5). Rather than fixingM and seeking to minimize E{RM}, a threshold

level ε2 is fixed and it is required that the integral-square truncation error be

less than or equal to the threshold level. Let M be a random variable such

that E{M} is the value of m that satisfies:

Rm−1 > ε2; Rm ≤ ε2

A complete orthonormal set {ϕk}k is sought such that E{M} is minimized.

The set {ϕk}k depends on the statistics of the process; in particular it is

not determined just by the correlation function as for the basis restriction

optimization criterion. Since the distribution of a Gaussian process depends

only on its correlation function one can conjecture that the Karhunen-Loève

expansion is again optimal under the criterion of minimizing E{M} for a given

threshold ε2, and for Gaussian input. A proof of this conjecture can be found

in [12] under the additional assumption that the process x(·) has finite energy:

E{R0} =
∞∑

k=1

λk <∞ .

We show at the end of the chapter a few applications of this property of the

Karhunen-Loève transform.
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2.7 Computational Issues

The diagonalization of an M × M matrix carries a cost of O(M 3).

For large collections of data there is a significant cost for the construction

or estimation of the auto-covariance matrix. There are alternate routes to

overcome these difficulties. We mention a few of them:

• If the input can be modeled by an autoregressive process, the eigenvectors

and eigenvalues of the Karhunen-Loève transform can be determined

analytically. See Ray and Driver [91].

• When the autocorrelation matrix is circulant the Karhunen-Loève trans-

form reduces to a discrete Fourier transform [54].

• Wickerhauser [127] proposes an approximation procedure of the Karhunen-

Loève transform. A dictionary of approximates is chosen based on a dis-

tance given by a transform coding gain metric or by an entropy metric.

• Davila [34] develops a strategy for blind estimation of the Karhunen-

Loève basis vectors for wireless communication applications, where the

stationarity properties of a signal vary with time.

• Levy and Lindenbaum [65] determine a lower-dimensional Karhunen-

Loève basis derived from a sequence of singular value decomposition

steps (see [60]). Their strategy applies to the analysis of a sequence of

N images of sizes M ×M with N much larger than M .
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With respect to bit rate allocation, the Karhunen-Loève transform is

still optimal even if the quantizers do not have high bit rates.

2.8 Summary

The Karhunen-Loève transform is one of the most widely used trans-

forms in modern signal processing. It is employed to decorrelate the sub-band

signals and also to represent a signal in its principal components. These qual-

ities makes the Karhunen-Loève transform optimal with respect to the coding

gain. However, in coding schemes, its properties are optimal only for Gaussian

input.

We showed in Sections 2.5 and 2.6 two different properties of the

Karhunen–Loève transform. In Section 2.5 we showed how the whole trans-

formed output is used such to insure the encoder works on decorrelated com-

ponents. The use of the Karhunen–Loève transform based on the property

shown in Section 2.6 is almost the opposite: the threshold representation

means discarding some of the computed vector basis. This strategy is adopted

in computer vision, motion estimation and pattern recognition applications,

where the cost to apply the transform – i.e. matrix-vector multiplications – is

high, hence lower dimensional solutions are preferable. The dimension reduc-

tion is achieved by keeping only the first few vectors of the Karhunen–Loève

basis, namely those corresponding to the largest eigenvalues. For details see

[103, 82, 78, 81].

The high cost and the data dependence of the Karhunen-Loève trans-
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form are significant in the processing and analysis of large collections of images

such as hyper-spectral ones. Once we know the performance of this optimal

memoryless system, we can search for filter banks that render at least the

same coding gain and have good decorrelation properties. The Karhunen-

Loève transform is a challenging reference point in the study of filter bank

performance and design.
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Chapter 3

Optimality of Filter Banks

The purpose of this chapter is to investigate coding gain optimality of

orthonormal filter banks. The coding gain is a good indication of the per-

formance of a filter bank in a sub-band coding scheme. The Karhunen-Loéve

transform is optimal in the principal component sense – as well as in the coding

gain sense. Principal component filter banks – yet to be defined and designed

– are desired such that they have the principal component optimality. The

rationale for studying in depth the theory and design of coding gain optimal

filter banks is first to have a good background on optimality of filter banks

for coding schemes and to ensure that principal component filter banks do not

violate the coding gain optimality.

3.1 Introduction

A filter bank is shown in Figure 3.1. Generally, the filters are chosen

such that the sub-band coders are optimal under certain explicitly stated cri-

teria. Under suitable conditions met by the filter banks considered in this

study, the coding gain of a filter bank can be expressed as the ratio of the

arithmetic and the geometric means of the sub-band variances that are output
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from the analysis filters – see Section 1.5.2. We call the sub-band signals that

are output from the analysis bank the “output sub-band signals” because it

is the analysis filter bank and its output that give all the information about

the performance of the filter bank. The coding gain itself is defined in terms

of the output from the analysis filter bank.

The filters are such that they satisfy the perfect reconstruction property

[117, 106, 125], which is to say that in the absence of quantization errors, the

output x̂ is a shifted and scaled version of the input – see Equation (1.11).

3.1.1 Polyphase representation of a filter bank

Recall that the polyphase representation of a single filter was introduced

in Section 1.3.2. The polyphase approach can be applied to all the filters in a

filter bank. In Figure 3.1 we see that the filtering operation on each channel is

applied to the input signal M times. The use of polyphase structures makes

the analysis filtering more efficient: the signal is down-sampled first and then

processed, hence the channels operate at a lower rate. See Figure 3.2. The

use of polyphase structures for filter banks leads to an efficient computational

implementation of the basic building blocks shown in Section 1.3.3. Parallel

processing is also suitable with the polyphase implementation of a filter bank.

From the theoretical point of view, the polyphase approach enables a uni-

form/unified theoretical treatment of all the filters in the bank at once. It also

has the advantage of converting a system that is not time (translation) invari-

ant on scalar-valued signals (Figure 3.1) into a system acting on vector-valued
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signals that is time-invariant.

For detailed discussions on polyphase matrices and other fundamental

building blocks for multi-rate systems see [117, 85, 84, 75].
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Figure 3.1: Standard form of a uniform maximally down-sampled M-channel
filter bank.
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Figure 3.2: The polyphase representation of a filter bank with additive sub-
band quantization noise

The analysis polyphase matrix is labeledE(·) and the synthesis polyphase
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matrix is labeled R(·). The down-samplers and up-samplers have been moved

across the polyphase matrices using the noble identities [106]

H(z)(↓M)x = (↓M)H(zM)x ,

(↑M)H(z)x = H(zM)(↑M)x .

Let the z-transforms of the filters be Hk(·), k = 0, 1, . . . ,M − 1. Each

of these filters admits a polyphase representation as in Section 1.3.2

Hk(z) =
M−1∑

l=0

z−lEkl(z
M), k = 0, 1, . . . ,M − 1 .

The polyphase matrix is the matrix E(z) = [Ekl(z)]0≤k,l<M . Denote by h the

vector whose rows are the frequency response of the analysis filter bank

h(z) =




H0(z)
H1(z)

...
HM−1(z)


 , z ∈ C .

The polyphase matrix and the filter banks are connected via

h(z) = E(zM)e(z), z ∈ C ,

e(z) = [1 z−1 ... z−(M−1)]T .

The vector e is called a delay chain.

Similar to a simple filter expressed in terms of its impulse response, the

polyphase matrix of a filter bank can be written as a z-transform of impulse

response matrices

E(z) =
K∑

k=0

Ekz
−k (3.1)
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Here K is the order of the polyphase matrix (assume that K 6= 0). The perfect

reconstruction property in terms of polyphase matrices is R(z)E(z) = I, and

x̂ = x. More generally speaking, we can say that a filter bank has perfect

reconstruction when E(·) is invertible, because we can always select R(·) to

be E−1(·). There are many techniques for the design of perfect reconstruction

finite impulse response filter banks [117, 105, 121].

Theorem 3.1.1. [106] A finite impulse response analysis bank has a finite

impulse response synthesis bank that gives perfect reconstruction if and only if

the determinant of E(·) is a monomial:

detE(z) = cz−l, l ∈ Z ,

for some nonzero constant c.

The polyphase representation of a filter bank enables us to treat the

filtering of a signal as a multi-input-multi-output linear time-invariant system.

3.1.2 Uniform filter banks

Filter banks can be divided into two classes based on the way the signal

is blocked and sent though the channels: uniform when all the channels are

down-sampled by the same factor and nonuniform otherwise. A uniform max-

imally down-sampled M -channel filter bank has each channel down-sampled

by M, whereas a maximally down-sampled nonuniform M-channel filter bank

satisfies
∑M−1

k=0
1
nk

= 1 where each natural number nk is the down-sampled

ratio on each channel. Of the two classes, uniform filter banks are the more
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common in practice, as they are easier both to analyze and to implement than

the nonuniform ones.

Uniform filter banks can be classified in terms of their analysis and

synthesis polyphase matrices E(·) and R(·), respectively (See Figure 3.2).

The types of uniform filter banks and their characteristics are listed below.

• Biorthogonal:

R(z)E(z) = I. The filter transfer functions satisfy:

Hk(z)Fj(z)|↓M = δkj where

X(z)|↓M is the z-transform of the down-sampled sequence {x[nM ]}n∈Z.

• Orthonormal or para-unitary:

R(z) = Ẽ(z) = ET
∗ (z

−1), the matrices E(·) and R(·) are para-unitary

Fk(z) = H̃k(z) the z-transform of h∗[−n]

fk[n] = h∗k[−n]

• Transform coder: a filter bank such that the polyphase matrix is con-

stant: E(z) = E0, z ∈ C. The filter lengths do not exceed the number

of channels.

• Finite impulse response filter bank: a filter bank with finite impulse

response filters; in this case the polyphase matrix can be written as:

E = E0 +E1z
−1 + · · · +EKz

−K , where K is the order of the multiple

input multiple output system
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• Infinite impulse response filters – see Section 1.3. Among these there are

the ideal filter banks – see Figure 1.4.

3.1.3 The McMillan degree of a filter bank

Recall the order of a filter defined in Section 1.3. The order of a filter

shows the number of delays required to implement the filter and it also shows

how much input memory is used to produce each output sample given – see

Equation (1.7)

y[n] =
N∑

k=0

h[k]x[n− k] .

The order of a filter is a measure of its complexity.

A filter bank can be regarded as a multi-input-multi-output system and

the transfer matrix of the system is the polyphase matrix of the filter bank.

The polyphase matrix E can be written as in Equation (3.1)

E(z) =
K∑

k=0

Ekz
−k .

The complexity of a filter bank, as measured by the number of delays required

to implement it, is not given by K. To illustrate this point, consider that

the simple first-order polyphase matrix E(z) = z−1I of an M -channel filter

bank requires M delays to implement it – see Figure 3.2. This is the min-

imum number of delays required to implement the system and this number,

M , is called the McMillan degree of the system. Non-causal systems cannot

be implemented by delays alone, hence the definition of McMillan degree is

restricted to causal systems.
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In order to show how the McMillan degree is defined in general, a few

preliminary results are necessary.

Let M and N be two positive integers. A matrix polynomial

H(z) ∈ CM×N [z] is a M × N matrix whose entries are polynomials in the

complex variable z

H(z) =
K∑

n=0

hnz
n, K ≥ 0 .

The order of a polynomial matrix is the largest numberK that satisfies hK 6= 0.

The notion of rank can be associated with a matrix polynomial and the rank

depends on the value of the variable z; in general rank(H(z)) ≤ min(M,N).

Specific to matrix polynomials is the normal rank defined next [42, 117].

Definition 3.1.1. Let H ∈ CM×N [z] be a polynomial matrix. The normal

rank of H(z) is

ρ(H(z)) = max
z∈C

rank(H(z)) . (3.2)

A matrix polynomial has full rank when its normal rank is maximum, i.e.

ρ(H(z)) = min{M,N}.

Definition 3.1.2. A square matrix polynomial U ∈ CM×M [z] with constant

non-zero determinant is called unimodular.

The normal rank of anM×M unimodular matrix isM and the inverse

of a unimodular matrix is also unimodular.

The next result gives the representation of a polynomial matrix. Let

H(z) be a polynomial matrix of size M ×N .
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Theorem 3.1.2. [42, 53] (Smith Form of a Polynomial Matrix). Every matrix

polynomial H(z) with normal rank q admits the representation

H(z) = P (z)D(z)Q(z) (3.3)

where

D(z) =




d1(z) · · · 0
. . .

... dq(z)
...

0
. . .

0 · · · 0




(3.4)

is a diagonal matrix polynomial with monic scalar polynomials dk(z) such that

dk(z) is divisible by dk−1(z). The matrices P (z) and Q(z) are unimodular

matrices.

The matrix D(z) in the Smith representation is unique, although P

and Q are not.

Let E(z) be the polyphase matrix of a causal finite impulse response

filter bank of order K Rather than using the Smith form of E(z) with respect

to the variable z−1 (i.e. regarding E(z) as a polynomial matrix in z−1), the

McMillan degree of E(z) is instead based on a closely related canonical from

known as the Smith-McMillan form, defined as follows:

1. Factor z−K out of E(z) and write this in the form

E(z) = z−KF (z)

where F (z) is a matrix polynomial in z.
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2. Let

F (z) = P (z)D(z)Q(z)

be the Smith representation of F (z).

3. The Smith-McMillan representation of E(z) is then defined to be

F (z) = P (z)Λ(z)Q(z)

where

Λ(z) = z−KD(z)

is the diagonal Smith-McMillan form for F (z).

The Smith-McMillan invariant factors for E(z) (the diagonal entries in Λ(z))

have the form

lk(z) =
dk(z)

zK

where the polynomials dk(z) are the Smith invariant factors for F (z).

Since P (z) and Q(z) are unimodular, the perfect reconstruction con-

dition

detE(z) = cz−d, d ≥ 0, c 6= 0 (3.5)

implies that the numerators (Smith invariant factors) are monomials:

dk(z) = zmk , mk ≥ 0 .

This means that the Smith-McMillan invariant factors for E(z) look like

lk(z) = zmk−K .
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It is possible to be more precise about the size of the exponents for the Smith-

McMillan invariant factors in the para-unitary case. In particular, when E(z)

is para-unitary, Vaidyanathan [117] and Brislawn [19] show that

0 ≤ mk ≤ K

Thus the Smith-McMillan form for E(z) is

Λ(z) =




z−n0 0 · · · 0
0 z−n1 · · · 0
...

...
. . .

...
0 0 · · · z−nM−1




with n0 ≥ n1 ≥ · · · ≥ nM−1 ≥ 0. Note that Λ(z) is a causal system when E(z)

is para-unitary. When E(z) is causal para-unitary finite impulse response, the

McMillan degree, µ, is defined to be

µ =
M−1∑

k=0

nk .

Also, taking the determinant of the Smith-McMillan representation from Equa-

tion (3.5) shows that

deg(detE(z)) = µ

In general for any causal system, the McMillan degree is defined by

a generalization of the above procedure. It is always a nonnegative integer,

although it is not always the same as the polynomial degree of detE(z). By a

theorem of Kalman [57], there exists an implementation of E(z) with exactly

µ delays and there are no implementations with fewer delays. For causal

finite impulse response systems, the McMillan degree is less than or equal to
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the order of the system. For example, transform coders are memoryless (order

zero) filter banks with McMillan degree zero. The first order polyphase matrix

E(z) = z−1I of anM -channel filter bank has McMillan degreeM greater than

1, however.

The representation of polyphase matrices in Smith-McMillan form is

useful in both analysis and design of filter banks and their properties.

3.2 Modeling Considerations

3.2.1 Orthonormal filter banks

The present theory is applicable to the “universe” of all orthonormal

filter banks. In practice, however, finite impulse response filter banks are

preferred over infinite impulse response ones as they are typically easier to

analyze and to implement. Also, finite impulse response filters lead to com-

pactly supported wavelets and so enjoy the benefits of multi-resolution analysis

[31, 4, 114, 124, 125].

The number of channels M is fixed greater than one. The terms “sub-

band” and “channel” are used interchangeably.

Whenever possible, the analysis filter banks are assumed causal. Note

that ideal filter banks are non-causal. Orthonormal or para-unitary filter banks

have the analysis polyphase matrix E(·) unitary at all frequencies,

Ẽ(eiω)E(eiω) = I, ω ∈ [0, 2π) . (3.6)

If E(z) is causal and para-unitary then the synthesis filter bank is anti-causal
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(i.e. polynomial in z) by the definition of Ẽ(z). The polyphase matrix of a

causal orthonormal filter bank with McMillan degree µ can be represented as

a cascade of generalized Householder based matrices and a unitary matrix U

– see Vaidyanathan [117]:

E(z) = V 0(z)V 1(z) . . .V µ−1(z)U , (3.7)

V k(z) = I + (−1 + z−1)vkv
T
k , ‖vk‖ = 1, 0 ≤ k < µ . (3.8)

This representation is based on dyadic structures I + (−1 + z−1)vvT that are

Householder matrices when z is −1; the vector v has unit norm.

As a generalization of the transform coder, a filter bank is considered

optimal if it satisfies the same optimality criterion, i.e. it maximizes the coding

gain or equivalently minimizes the mean-square reconstruction error due to

sub-band quantization.

In an orthonormal filter bank, each filter satisfies the Nyquist(M) con-

straint

|Hk(e
iω)|2↓M = 1, 0 ≤ k < M (3.9)

or equivalently

M−1∑

l=0

|Hk(e
i(ω−2πl/M))|2 =M, 0 ≤ k < M (3.10)

The optimal filters we consider are alias-free(M) or anti-alias(M) filters, i.e.

the output of the filter can be down-sampled without aliasing or equiva-

lently the shifted versions Hl(e
i(ω−2kπ/M)) do not overlap for k 6= l, k, l ∈
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Figure 3.3: The set of orthonormal filter banks

{0, 1, ...,M−1} – see Section 1.3.3. We say that these filters have alias-free(M)

support and for such filters there could be multiple pass-bands.

The “universe” of orthonormal filter banks is shown in Figure 3.3.

Denote by U∞,M the set of maximally down-sampled uniform M-channel or-

thonormal filter banks with unrestricted orders. The “universe” U∞,M contains

all of the finite impulse response orthonormal filter banks; the sets of finite

impulse response filter banks with McMillan degree µ and the class of trans-

form coders are denoted by Uµ,M and U0,M , respectively. Among the infinite

impulse response filter banks, U∞,M contains the ideal passband filters and

infinite impulse response rational filter banks.
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3.2.2 Statistical models

This section gives the models for the input to orthonormal filter banks

and shows the action of the filters on the input signal. Also, the model for the

quantization error and the definition of the optimality of filter banks in the

presence of quantizer errors are given.

The input signal x is a zero mean, wide-sense stationary stochastic pro-

cess with given power spectral density Sxx(·) and variance σ2x. The input signal

passes through a filter bank that outputs the signals vk, k = 0, 1, . . . ,M − 1

called the output sub-band signals. The sub-band signals vk(·) have zero mean

and are jointly wide sense cyclo-stationary with variances σ2vk . The term “out-

put” refers to the output from the analysis bank. In the polyphase representa-

tion the input signal is blocked and the output signals vk are the components

of the output vector signal v = [v0, v1, . . . , vM−1]
T – see Figure 3.2

The power spectral density matrix of the output signal is given by

Svv(e
iω) = E(eiω)Sxx(e

iω)E†(eiω), ω ∈ [0, 2π] (3.11)

where E(·) is the polyphase matrix of the filter bank and the output sub-band

variance vector, σ2v, and its components are

σ2v = [σ2v0
, σ2v1

, ..., σ2vM−1
]Tand

σ2vk =

∫ 2π

0

[Svv(e
iω)]kkdω/(2π) . (3.12)

By convention, the filters output the sub-band variances ordered by size, so

that

σ2v0
≥ σ2v1

≥ ... ≥ σ2vM−1
.
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In any filter bank this ordering can be achieved via a permutation of the filters

without affecting the perfect reconstruction or the orthonormality properties.

Proposition 3.2.1. 1) A uniformly down-sampled wide-sense stationary in-

put is also wide-sense stationary and the variance of the down-sampled signal

equals the input variance.

2) The average of the output sub-band variances from a uniform maximally

down-sampled orthonormal filter bank is equal to the input variance.

Proof. 1) Suppose the input signal is down-sampled uniformly by a factor of

M; the down-sampled sequence (↓M)x is described by

(↓M)x[n] = x[nM ], n ∈ Z .

The mean of the down-sampled sequence is

E{(↓M)x[n]} = E{x[nM ]} = µx = 0, n ∈ Z ,

and the autocorrelation is

RM [n, n− l] = E{(↓M)x[n]} ((↓M)x[n− l])∗} = R[lM ], n, l ∈ Z.

I only depends on the lag l, and, therefore, the down-sampled signal is also

wide-sense stationary. The variance of the down-sampled signal equals the

input variance since RM [n, n] = R[0].

2) Denote the trace of the output power spectral density matrix by t, where

t = tr Svv(e
iω) =

M−1∑

k=0

[Svv(e
iω)]kk .
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Since E(eiω) is unitary at each ω, we deduce from Equation (3.11) that t is

constant and equals the trace of the input power spectral density, since for any

matrix A ∈ RM ×M and any unitary matrix U ∈ CM ×M th trace satisfies

tr A = tr EAE† .

Equation (3.12) shows that t is invariant under the integration, and so the

sum of the output variances is constant and averages the input variance.

Proposition 3.2.2. Let a signal be such that its power spectral density does

not vanish on a set of positive measure in [0, 2π] and let this signal be the input

to a para-unitary filter bank. Then the output sub-band variances are strictly

positive. Furthermore, the coding gain is well defined.

Proof. [88, 101]. Let the number of channels be M . Refer to Figure 3.1; since

for each filter in the bank,

Svkvk(e
iω) = Sxx(e

iω)|Hk(e
iω)|2, k = 0, 1, . . . ,M − 1 ,

and the filter bank is orthonormal, it follows that the sub-band variances are

nonzero, otherwise the orthonormality of the filter bank would be contradicted.

The output sub-band variances are nonnegative by the Wiener-Khinchin cri-

terion [38, 37, 33].

Quantizer Noise. The model for the quantization error is the stan-

dard noise model from Section 1.5.2. The quantizer is modeled by additive
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noise sources qk(·) that are random processes, jointly wide sense stationary

with zero-mean and variances

σ2qk = c2−2bkσ2xk = c2−2bkσ2vk , k = 0, 1, . . . ,M − 1

Here bk is the bit budget allowed for the sub-band k and b =
∑M−1

k=0 bk/M

is the fixed average bit rate. The constant c is associated only with the prob-

ability density function of the quantizer’s input. The standard noise model

conveys that signals with higher variance have more bits allocated when quan-

tization is involved. The noise sources qk(·) are not constrained to be white or

have any two noise sources uncorrelated.

In many signal processing tasks the performance of a filter bank is

reflected by two gains expressed in terms of the output sub-band variances.

These are the coding gain and the compaction gain. Recall the formula for the

coding gain from Section 1.5.2

Gcoding =
(1/M)

∑M−1
k=0 σ

2
vk

(
∏M−1

k=0 σ
2
vk
)1/M

=
σ2x

(
∏M−1

k=0 σ
2
vk
)1/M

. (3.13)

The compaction gain is defined as

Gcomp =
σ2v0

σ2x
(3.14)

with the convention that σ2v0
≥ σ2v1

≥ ... ≥ σ2vM−1
.

A definition of optimality. With these assumptions on the filter

banks and input data and noise models as stated above, a filter bank is op-

timal for coding gain over a certain class of filters C ⊂ U∞,M if its coding
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gain is maximized over C. Equivalently, the product of sub-band variances is

minimized over C.

Unless otherwise specified, optimality of a filter bank is understood in

the coding gain sense. The coding gain is a positive valued function defined

on U∞,M (Figure 3.3). The lowest value of the coding gain is 1, from the

arithmetic/geometric mean inequality.

Definition 3.2.1. Let x be the input to an orthonormal uniform filter bank

with an arbitrary finite number of channels, M . The down-sampled signals

vk, k = 0, 1, ...,M − 1 are totally decorrelated if, for all integers m,n

E{vk[n]v∗l [m]} = c2l δklδmn, k, l = 0, 1, . . . ,M − 1 , (3.15)

The down-sampled sub-band signals are decorrelated as random pro-

cesses, not only as random variables; in the former case we have, for each fixed

integer n

E{vk[n]v∗l [n]} = c2l δkl for k 6= l . (3.16)

Note that in the previous relations the value of the correlation c2l depends

only on the component index, not on the “time” value; this simplification is

justified by linearity of the filters and the property of the input of being a wide

sense stationary process.

Denote by Sk(·) the power spectral density of the k-th down-sampled

sub-band signal vk(·) and let σ2vk be its variance.
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Definition 3.2.2. Assume that the output sub-bands variances are ordered

decreasingly

σ2v0
≥ σ2v1

≥ ... ≥ σ2vM−1
.

The sub-band signals, or the sub-band power spectra {Sk(·)}0≤k≤M−1 have the

spectral majorization property if

S0(e
iω) ≥ S1(e

iω) ≥ . . . ≥ SM−1(e
iω), ω ∈ [0, 2π]. (3.17)

This property gives information about the action of the filters upon the

input and is a key ingredient in the study of optimality with respect to the

coding gain.

3.3 Coding Gain

The results here show when a filter bank is optimal with respect to the

coding gain in U∞,M . See [114, 118].

In Chapter 2 it is shown that the orthogonal transform coder with a

constant polyphase matrix E ∈ CM×M maximizes the coding gain over all the

transform coders if and only if it decorrelates the input signal – see Equation

(3.16). In the case of a sub-band coder stronger conditions are necessary for

coding gain optimality over U∞,M .

3.3.1 Necessary conditions for optimality

In the next results the coding gain optimality is considered over the

whole universe U∞,M .
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Theorem 3.3.1. The sub-band signals of a coding gain optimal filter bank

over U∞,M satisfy the total decorrelation property as in Definition 3.2.1.

Proof. [118] Consider an optimal filter bank over U∞,M . Suppose a pair of

sub-band signals are correlated. It suffices to show that the coding gain can

be increased without violating the orthonormality of the filter bank. Without

loss of generality we may assume that the first two sub-band signals are such

that the random processes v0 and a shifted version of v1 are correlated, that

is, there exists an integer k such that for all integers n,

E{v0[n]v∗1[n− k]} 6= 0 .

Since the input is wide sense stationary, the inequality holds for all integers

n. Let Θ be the Karhunen-Loève transform matrix for the vector process

[v0[n] v
∗
1[n − k]]T . An analysis filter bank can be constructed to decorrelate

v0 and v1, using Θ and a delay z−k. The polyphase matrix of this new filter

bank is

EΘ,k(z) =

[
Θ 0

0 I

]
Λ(z)E(z), with

Λ = diag{1, z−k, 1, . . . , 1} .

The matrices E,Λ and Θ are para-unitary, hence their product is a para-

unitary matrix EΘ,k. Let wk, k = 0, 1, . . . ,M − 1 be the sub-band signals

from the new filter bank with polyphase matrix EΘ,k
, as in Figure 3.4 and

let Rw and Rv be the correlation matrices of the vectors [w0[n] w
∗
1[n]]

T and
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Figure 3.4: Coding gain increased by a decorrelation transform

[v0[n] v
∗
1[n− k]]T respectively. From the definition of Θ it follows that

Rw = ΘRvΘ
†

and sinceΘ is a Karhunen-Loève transform, the matrix Rw is diagonal. Since

Θ is unitary it follows that

det(Rw) = det(Rv) .

Hadamard inequality yields:

σ2w0
σ2w1

< σ2v0
σ2v1
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where σ2wk , σ
2
vk
, k = 0, 1 are the diagonal elements of the matrices Rw and

Rv, respectively [60, 15]. The inequality σ2w0
σ2w1

< σ2v0
σ2v1

means that the

coding gain is greater for the polyphase matrix EΘ,k
which contradicts the

fact that the filter bank with polyphase E is optimal in U∞,M . In conclusion,

the total decorrelation of the sub-band signals – as stochastic processes – is a

necessary condition for coding gain optimality.

The above theorem has another interpretation. When the analysis filter

bank is optimal with respect to the coding gain, the power spectral density

matrix of the vector stochastic process v = [v0 v1 · · · vM−1]T of sub-band

signals is diagonal

Svv(e
iω) =




S0(e
iω 0 . . . 0

0 S1(e
iω) · · · 0

...
...

. . .
...

0 0 · · · SM−1(e
iω)


 , ω ∈ [0, 2π)

with Sk(·) being the power spectral density of sub-band signal vk with

k = 0, 1, . . . ,M − 1. This is because correlation of sub-bands translates into

non-zero terms off the diagonal in the power spectral density matrix.

The next theorem shows another necessary condition for optimality of

a filter bank. Again the optimality is over U∞,M and it is understood in the

coding gain sense: a filter bank is optimal if its coding gain is maximum in

U∞,M .

Theorem 3.3.2. The output sub-band signals of a coding gain optimal fil-

ter bank over U∞,M satisfy the spectral majorization property as in Definition

3.2.2.
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Proof. [118] Suppose that the majorization property is not satisfied. Assume

without loss of generality that the first two sub-band spectra are not majorized,

S0(·) and S1(·). Then, there are values of the argument ω at which S0(e
iω) ≥

S1(e
iω) does not hold; an example is shown in Figure 3.5.

��������� �
	

�������� ��	

�������������
��������
 !���"$#%� �

&(' )*

Figure 3.5: Output spectra without the spectral majorization property.

Let E be the polyphase matrix of the original analysis filter bank.

Construct a matrix T as

T (eiω) =





IM , if S0(e
iω) ≥ S1(e

iω)

0 1 0

1 0 0

0 0 IM−2


 , if S0(e

iω) < S1(e
iω)

where IM and IM−2 are the identity matrices in RM and RM−2, respectively.

Cascade the matrix T as in Figure 3.6. Denote by ST,0(·) and ST,1(·) the pair

of output spectra of the first sub-band, after applying T . For all ω in [0, 2π]
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Figure 3.6: The new polyphase matrix for sub-band decorrelation.

the following inequalities hold;

ST,0(e
iω) ≥ ST,1(e

iω),

ST,0(e
iω) ≥ S0(e

iω),

ST,1(e
iω) ≤ S1(e

iω).

Thus the variances of the new sub-band signals w0 and w1 are such that

σ2w0
≥ σ2v0

and σ2w1
≤ σ2v1

.

The analysis polyphase matrix ET = TE is para-unitary since T is unitary
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by construction; hence the sum of output variances is unchanged,

σ2w0
+ σ2w1

= σ2v0
+ σ2v1

.

Thus the new variances can be written in terms of the old ones

σ2w0
= σ2v0

+ δ, σ2w1
= σ2v1

− δ, δ > 0 .

Evaluate the product of the new sub-band variances

σ2w0
σ2w1

= σ2v0
σ2v1
− δ2 − δ(σ2v0

− σ2v1
) < σ2v0

σ2v1

The coding gain is thus increased and that contradicts the optimality over

U∞,M of the filter bank with polyphase matrix E.

3.3.2 Sufficient conditions for optimality

Neither of the necessary conditions from the previous two theorems is

sufficient by itself for coding gain optimality, but if they are both satisfied,

then optimality over U∞,M is attained.

Theorem 3.3.3. (Necessary and sufficient conditions for optimality.) Let

a signal with given power spectral density be input to filter banks in U∞,M .

The coding gain is maximized over U∞,M if and only if the down-sampled out-

put sub-band signals satisfy the total decorrelation and the spectral majoriza-

tion properties. Moreover, the set of down-sampled sub-band power spectra is

unique – but the optimal orthonormal filter bank may not be unique.
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Proof. [118] This proof relies on the existence of optimal filter banks over

U∞,M . Let E(·) provide total decorrelation of sub-band spectra and spectral

majorization. From the total decorrelation property of E(·) it follows that the

output power spectral density matrix is diagonal at each frequency ω ∈ [0, 2π],

Svv(e
iω) = E(eiω)Sxx(e

iω)E†(eiω) (3.18)

= diag{S0(eiω) S1(eiω) . . . SM−1(e
iω)} .

The matrix E(·) is unitary at each frequency, hence the output sub-band

spectra S0(e
iω), S1(e

iω), . . . , SM−1(e
iω) are the eigenvalues of the input power

spectral density matrix calculated at each ω ∈ [0, 2π]. At each frequency, the

set of eigenvalues is unique. Let F (·) be a polyphase matrix that is known to

maximize the coding gain. The polyphase matrix F (·) diagonalizes the input

power spectral density matrix, at each frequency, whence

S
(F )
vv(e

iω) = F (eiω)Sxx(e
iω)F †(eiω)

= diag{S(F )0 (eiω) S
(F )
1 (eiω) . . . S

(F )
M−1(e

iω)} .

The set of eigenvalues of a matrix is unique up to a permutation. The spectral

majorization property of E(·) guarantees that at each frequency

Sk(e
iω) = S

(F )
k (eiω), k = 0, 1, . . . ,M − 1 .

Hence the coding gain of E(·) is also maximum over U∞,M . However, the set

of eigenvectors of a matrix are not necessarily unique, therefore the analysis

polyphase matrix E, and hence the filter bank may not be unique for a given

input power spectral density.
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3.4 Energy Compaction

3.4.1 Compaction filters

Definition 3.4.1. An analysis filter H(·) whose output variance σ2v is maxi-

mized subject to the constraint that |H(·)|2 be Nyquist(M) [118] is called an

optimum compaction filter.

An M -channel orthonormal filter bank is an optimum compaction fil-

ter bank if it contains one optimum compaction filter. The compaction gain

defined in Equation (3.14) shows the ability of a filter bank to pack most of its

output energy in one channel. This is a useful property in applications such

as signal analysis, denoising, compression and progressive transmission [6, 63].

The compaction gain is an indicator of the performance of a filter bank when

the input signal is reconstructed from a reduced number of channels. This cri-

terion mirrors the principal component approximations of the Karhunen-Loève

transform. An optimum compaction filter bank is constructed as follows: an

optimum compaction filter is designed first and a filter bank procedure renders

the remaining filters.

The constraint that the optimum compaction filter be Nyquist(M) is

|H(eiω)|2↓M = 1

or, equivalently

M−1∑

k=0

|H(ei(ω−2kπ/M))|2 =M, ω ∈ [0, 2π]
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is imposed because the analysis filters of an orthonormal filter bank always

satisfy it.

Theorem 3.4.1. (Construction of an optimum compaction filter.) Assume

that the input power spectral density is piecewise continuous on [0, 2π]. The

following procedure renders an optimum compaction filter:

• Step 1. At each frequency ω0 in [0, 2π/M) define the M alias frequencies

by

ωk = ω0 + 2kπ/M, 0 ≤ k ≤M − 1 .

• Step 2. Compare the values of Sxx(e
iωk) at these M alias frequencies

{ωk}0≤k≤M−1. Let L be the smallest integer such that Sxx(e
iωL) is a

maximum in this set. Assign

H(ei(ω0+2kπ/M)) =

{√
M, if k = L,

0, otherwise.

• Repeat for each ω0 in [0, 2π/M). H(eiω) is defined for all w in [0, 2π]

and satisfies the conditions from Definition 3.4.1.

Proof. [118] Evaluate the output variance taking into account the construction

of the filter H. First, the output power spectral density is

Svv(e
iω) = Sxx(e

iω)|H(eiω)|2

=
1

M

M−1∑

k=0

Sxx(e
i(ω+2πk/M))|H(ei(ω+2πk/M))|2 .
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Figure 3.7: (a) Input power spectral density. (b) Optimal compaction filter in
a 3-channel filter bank.

The output variance is

σ2v =

∫ 2π

0

Svv(e
iω)dω/(2π)

=
1

M

∫ 2π

0

M−1∑

k=0

Sxx(e
i(ω+2πk/M))|H(ei(ω+2πk/M))|2dω/(2π) . (3.19)

The integrand should be maximized for each ω in [0, 2π) by an appropriate

choice of |H(·)|2. Let ω0 ∈ [0, 2π/M). Denote by L the smallest integer such

that

Sxx(e
i(ω+2πL/M)) = max

k
{Sxx(e

i(ω+2πk/M))} ,

and recall the Nyquist(M) constraint from Equation (3.10):

M−1∑

l=0

|Hk(e
i(ω−2πl/M))|2 =M, 0 ≤ k < M.
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Consider a sum S =
∑M−1

k=0 ckxk where ck are fixed nonnegative numbers such

that c0 ≥ c1 ≥ . . . ≥ cM−1 ≥ 0 and xk are sought such that the sum S is

maximum under the constraint
∑M−1

k=0 xk = x > 0. Then the best choice of

the constants xk is given by x0 = x and xk = 0, k 6= 0.

Thus the integrand in Equation (3.19) is maximized for a fixed frequency w0

under the Nyquist(M) constraint if

H(ei(ω0+2πk/M)) =

{
M, k = L

0, k 6= L, 0 ≤ k < M

This choice satisfies the Nyquist(M) constraint. A filter is constructed with

passband width of 2π/M and its output variance is the largest among all the

Nyquist filters with the same passband width.

An example of this procedure is shown in Figure 3.7.

3.4.1.1 Remarks on the construction of optimum compaction filters

• The construction of the previous theorem renders ideal passband filters:

H(·) is an ideal two-level filter with passband response
√
M and stop-

band response 0.

• The magnitude |H(·)| is not uniquely determined because of the selec-

tion(choice) strategy at the comparison step in Theorem 3.4.1.

• If H(·) is an optimal compaction filter for a given input power spectral

density Sxx(·) then it will be a valid optimal solution for any transformed

f(Sxx(·)) as long as f(.) is a positive nondecreasing function.
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• For real inputs, the construction of H(·) can be modified to obtain a

symmetric solution.

• If the input is white, any filter satisfying the Nyquist(M) condition is

optimal.

• Filters constructed according to this algorithm are unrealizable ideal

infinite order filters. Approximations of these filters with finite impulse

response filters are used in the performance analysis to compare with the

coding gain of realizable filters [115].

3.4.2 Energy compaction eigenproblem

The next result shows the correspondence between optimum compaction

gain and optimum coding gain in U∞,M . Consider the polyphase representa-

tion of an analysis filter:

H(z) =
M−1∑

k=0

z−kEk(z
M) .

The Nyquist(M) condition can be expressed equivalently as:

M−1∑

k=0

|Ek(e
iω)|2 = 1, ω ∈ [0, 2π).

Define:

e†(eiω) := [E0(e
iω) E1(e

iω) ... EM−1(e
iω)] .

The Nyquist(M) condition becomes:

e†(eiω)e(eiω) = 1, ω ∈ [0, 2π].
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Denote by Sxx(·) the power spectral density matrix of the blocked process

x : Z → CM . The power spectral density of the output v : Z → C is given by:

Svv(e
iω) = e†(eiω)Sxx(e

iω)e(eiω)

and the variance:

σ2v =

∫ 2π

0

e†(eiω)Sxx(e
iω)e(eiω)

dω

2π
.

Maximization of σ2v under the Nyquist(M) constraint is equivalent to the max-

imization of the integrand; thus e(eiω) is the eigenvector corresponding to the

maximum eigenvalue of Sxx(e
iω) at any value of the argument ω. The above

steps constitute the proof of the next theorem.

Theorem 3.4.2. [113, 118] A filter is an optimum compaction filter for a

signal with given input power spectral density if and only if the following con-

ditions are satisfied:

1. the polyphase vector of the filter is para-unitary, or equivalently the filter

satisfies the Nyquist(M) constraint and

2. the polyphase vector of the filter is an eigenvector corresponding to the

largest eigenvalue of the input blocked power spectral density matrix.

3.5 Design Considerations

3.5.1 Polyphase interpretation of optimality

Here it is shown the connection between the two concepts of optimality:

in the coding gain sense and with respect to the maximum compaction gain.

90



Theorem 3.5.1. A coding gain optimal filter bank over U∞,M contains an

optimum compaction filter.

Proof. [118] Assume that the output sub-band variances ordered decreasingly;

we show that the first filter in the bank, H0(·) is an optimum compaction filter.

From the Theorem 3.3.3 on necessary and sufficient conditions for opti-

mality we know that the polyphase matrix E(·) of a coding gain optimal filter

bank in U∞,M diagonalizes the blocked power spectral density matrix.

E(eiω)Sxx(e
iω)E†(eiω) = diag{S0(eiω), S1(eiω), ..., SM−1(e

iω)}

Denote as in Theorem 3.4.2 by ek the eigenvectors of the input power spectral

density matrix. The relation to the polyphase matrix of an optimal coding

gain filter bank is




e
†
0(e

iω)

e
†
1(e

iω)
...

e
†
M−1(e

iω)


 Sxx(e

iω) [e0(e
iω) e1(e

iω) · · · eM−1(e
iω)]

=




S0(e
iω) 0 · · · 0

0 S1(e
iω) · · · 0

...
...

. . .
...

0 0 · · · SM−1(e
iω)


 (3.20)

where we identify:

E(eiω) =




e
†
0(e

iω)

e
†
1(e

iω)
...

e
†
M−1(e

iω)


 .
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Since E(eiω) is unitary for all ω, the sub-band spectra

Sk(e
iω), k = 0, 1, . . . ,M−1 are the eigenvalues and the columns ofE(eiω) form

an orthonormal set of corresponding eigenvectors of Sxx(e
iω). The spectral

majorization property is a necessary condition for optimality therefore S0(e
iω)

is the largest eigenvalue of Sxx(e
iω) and e0(e

iω) is the corresponding eigen-

vector, for each ω. Theorem 3.4.2 is invoked to complete the proof.

3.5.2 Procedure to find optimal analysis filter banks

An optimal filter bank can be designed based on the result in the pre-

vious theorem [118, 63]. One optimal compaction filter is constructed for the

given input power spectral density followed by a sequence of optimal com-

paction filters for the frequencies that are not part of the previously con-

structed filters. The input x is a wide-sense cyclo-stationary process with a

zero mean and given power spectral density Sxx(·). The noise is modeled with

the standard model as described in Section 1.4. The desired filter bank is also

optimal with respect to the coding gain in U∞,M .

The steps described next are called the “peel off” procedure [118]. Fig-

ure 3.8 illustrates the procedure. Suppose H0(·) is constructed as an optimal

energy compaction filter with passband support Ω0 as in Theorem 3.4.1. Define

a partial power spectral density function by

S(1)xx (e
iω) =

{
0, ω ∈ Ω0

Sxx(e
iω), otherwise .

The next filter H1(·) is designed as the optimal compaction filter for the partial
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Figure 3.8: Design of ideal signal-adapted filter banks

power spectral density S
(1)
xx (eiω) and denote by Ω1 its passband. Define

S(2)xx (e
iω) =

{
0, ω ∈ Ω0 ∪ Ω1

Sxx(e
iω), otherwise .

and denote by Ω1 its passband The procedure continues until the last filter
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HM−1(·) is constructed. The filters designed using the “peel-off” procedure

realize a total decorrelation because they do not overlap. These are ideal

unrealizable filters. [115, 114].

Remark 3.5.1. The output has the spectral majorization property.

Proof. Let ω0 be arbitrary from the interval [0, 2π/M) and define

ωk = ω0 + 2πk/M, k = 0, 1, . . . ,M − 1 .

The wk’s are the alias frequencies of ω0. By construction, each filter Hk has

exactly one of these frequencies in its passband. The compaction filters are

designed in a sequential order, the first ones corresponding to higher values of

the input power spectral density. The value of the square frequency response

of each filter is constant,
√
M . Renumber the ωk’s such that ωl is in the

passband of Hl. Then

Sxx(e
iω0) ≥ Sxx(e

iω1) ≥ . . . ≥ Sxx(e
iωM−1), ω ∈ [0, 2π).

The down-sampled power spectral density Sl(·) takes the value of Sxx(e
iωl) at

the frequency Mωl(modulo 2π). Denote

ω̂l =Mωl(modulo 2π).

The role of the modulo operation is to keep the frequencies within [0, 2π]),

hence ω̂l ∈ [0, 2π]. Since the ωl’s are alias frequencies the quantity

ω̂ =Mωl(modulo 2π)
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is the same for all l = 0, 1, . . . ,M − 1. Hence from the previous inequality it

follows that

S0(e
iω̂) ≥ S1(e

iω̂) ≥ . . . ≥ SM−1(e
iω̂)

holds for all ω̂ in [0, 2π). Since ω0 is chose arbitrarily in [0, 2π/M) the in-

equality holds for all ω̂ ∈ [0, 2π). Hence, the majorization of sub-band spectra

holds.

The filter banks designed through the above procedure are both coding

gain and compaction gain optimal. These filter banks are fully signal-adapted;

however they are ideal filters. Their practical use is in performance evaluation:

the ideal filters are approximated by finite impulse response filter banks and

the estimated coding gain of an ideal filter bank is compared against the coding

gain of a given filter bank.

The compaction optimality is a desired property in certain applications

such as compression, signal analysis and there are strategies to construct finite

impulse response optimum compaction filter banks that are signal-adaptive.

For examples, see [80, 79, 63]. However, a construction of finite impulse re-

sponse filter banks following the “peel-off” procedure is a seemingly intractable

nonlinear optimization problem for which no solution is known and no algo-

rithm has yet been found satisfactory. See [80, 114, 113]. In the next chapter

the compaction and coding gain issues and design of finite impulse response

filter banks are discussed in the context of principal component optimality.
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Chapter 4

Principal Component Filter Banks

4.1 Introduction

This chapter presents a new approach to optimality of filter banks in a

sense that couples the Karhunen-Loève transform optimality with the coding

gain and the compaction gain optimalities.

The mathematical setting for this new approach is introduced by Unser

[114] who raises the question of existence and design of a para-unitary M -

channel filter bank optimal in the sense of minimizing the reconstruction error

when fewer than M sub-bands are used for signal reconstruction. This is a

direct extension of the optimality exhibited by the Karhunen-Loève transform

for the class of transform coders.

The major drawback of the Karhunen-Loève transform is its signal

dependence which makes it very expensive. In practice, suboptimal transforms

and filter banks are used, such as discrete cosine transform, lapped orthogonal

transforms and wavelet transforms [109, 89, 36, 29]. One reasonable approach

is to design filter banks whose performance parallels that of the Karhunen-

Loève transform, at a lower cost if possible. In order to pursue this path,

we first study in depth the existence of filter banks that couple the principal
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component optimality with the coding gain maximization.

A first challenge posed by the design of a filter bank is the length of the

filters. Finite impulse response filters are of practical importance, of course;

however the theory is developed on the universe of orthonormal filter banks

U∞,M without restriction on the filter orders. The strategy is to develop theory

on the unrestricted class of filters and to apply it to finite impulse response

filters, if possible.

The concept of a principal component filter bank as a perfect recon-

struction one which minimizes the approximation error – in the mean-square

sense – between the original signal and its low-resolution version was intro-

duced by Tsatsanis and Giannakis [113]. A filter design is sought such that its

first P sub-bands approximate best the input signal in the mean-square sense.

Let a zero-mean wide sense stationary discrete stochastic process be input to

a uniform maximally down-sampled M -channel para-unitary filter bank. Sup-

pose that the output sub-band variances are ordered decreasingly and that we

use only the first P sub-bands to reconstruct the signal. The approximation

error is the average of the discarded sub-band variances

ε(P ) =
1

M

M−1∑

k=P

σ2vk , P ≤M (4.1)

with the variances given by Equation (3.12):

σ2vk =

∫ 2π

0

[
E(eiω)Svv(e

iω)E†(eiω)
]
kk
dω/(2π), k = 0, 1, . . . ,M − 1 .

The input signal is decomposed into uncorrelated low-resolution principal com-

ponents with decreasing variance. This technique for filter bank design has
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its origin in the results for principal components for time-series analysis [17].

The mean square error criterion is commonly used in signal processing; nev-

ertheless many results on the optimality of principal component filter banks

[130, 131] emerged under other optimality criteria [80, 79, 63, 8, 7].

This chapter is structured as follows. The first results on principal

component filter banks as they are derived from time-series analysis are shown.

A rigorous definition of principal component filter banks is provided. Two

sections show our contributions: a new theorem on the existence of coding

gain optimal filter banks for finite impulse response filter banks and a study

of principal component filter banks and optimal coding gain for filter banks

with McMillan degree 1. Finally, the existence of principal component filter

banks is discussed.

4.2 Principal Component Filter Banks from Time-Series

Analysis

The first results on principal component filter banks are derived by

Tsatsanis and Giannakis [113].

Definition 4.2.1. A process is second-order if its mean and autocorrelation

are ergodic, i.e. statistical averages are estimated as time averages:

E{x} = lim
N→∞

1

2N + 1

N∑

k=−N

x[n] ,

Rxx[k] = lim
N→∞

1

2N + 1

N∑

k=−N

x[n]x†[n− k] .
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Let x be a M-dimensional zero-mean second-order real valued process

and assume that x̂ is an approximation of x. The time-averaged mean square

reconstruction error is defined as

J = lim
N→∞

1

2N + 1

N∑

n=−N

E{(x[n]− x̂[n])T (x[n]− x̂[n])}

Let the autocorrelation matrix

Rxx[n, τ ] = E{x[n+ τ ]xT [n]}

satisfy a uniform boundedness criterion for all integers n:

|[Rxx[n, τ ]]k,l| ≤ B(τ),
∑

τ

B(τ) <∞ 1 ≤ k, l ≤M . (4.2)

Define the time-averaged autocorrelation and power spectral density matrices,

Rxx[τ ] and Sxx(ω), respectively, as

Rxx[τ ] = lim
N→∞

1

2N + 1

N∑

k=−N

Rxx[n, τ ] and

Sxx(ω) =
∑

τ∈Z
Rxx[τ ]e

−iωτ .

Refer to Figure 3.2. Denote by E(·) and R(·) the matrices whose rows are the

M -polyphase components of each filter from the original analysis filter bank

H0(·), H1(·), . . . , HM−1(·) and synthesis filter bank F0(·), F1(·), . . . , FM−1(·) in

Figure 3.1. The matrices E(·) and R(·) are sought such that the filter bank

is optimal in the sense of minimizing the mean-square projection error – see

Section 2.3. In the blocked representation of the input and of the sub-band
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signals, the action of the partial filters is

v[n] =
∑

k∈Z
En−kx[k] ,

x̂[n] =
∑

k∈Z
Rn−kv[k], n, k ∈ Z ,

where it is understood that the polyphase matrices are expressed as:

E(z) =
∑

n∈Z
Enz

−n

R(z) =
∑

n∈Z
Rnz

−n

and this expression is valid in U∞,M . If only a finite number of impulse response

matrices En, with positive indices, are non-zero then the polyphase matrices

correspond to a finite impulse response filter bank with causal analysis filters

E(z) =
K∑

k=0

Ekz
−k

The next proposition addresses the question of design of these polyphase ma-

trices that are optimal in the principal component sense.

Proposition 4.2.1. [113]. Let x be M-dimensional zero-mean, second-order

real valued process satisfying the uniform boundedness criterion from Equation

(4.2). Then the optimal P ×M and M ×P polyphase matrices E(·),R(·) that

minimize the time-averaged mean-square error are

E(eiω) =




e
†
0(e

iω)

e
†
1(e

iω)
...

e
†
P−1(e

iω)




R(eiω) = E†(eiω), ω ∈ [0, 2π]
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where ek(e
iω), k = 0, 1, . . . , P − 1 is the eigenvector corresponding to the

(k + 1)-st largest eigenvalue of the time-averaged input power spectral density

matrix at each ω in [0, 2π].

The next corollary describes the filters in the banks for a scalar process.

Corollary 4.2.2. [113]. Let x be a second-order process with uniformly

bounded autocorrelation. Then the optimal filters Hk(·), Fk(·), k = 0, 1, ..., P−1

that minimize the time-averaged mean-square reconstruction error

J = lim
N→∞

1

2N + 1

N∑

n=−N

E{[x̂[n]− x[n]]2}

are given by

Hk(z) =
M−1∑

l=0

z−lEkl(z
M)

Fk(z) = Hk(z
−1), k = 0, 1, . . . , P − 1 (4.3)

where z = eiω, ω ∈ [0, 2π] and e
†
k(e

iω) = [Ek0(e
iω) , ..., Ek,M−1(e

iω)] is

the eigenvector corresponding to the (k + 1)st largest eigenvalue of the time-

averaged input power spectral density matrix.

Note the similarity between the assertion in this corollary and the The-

orem 3.4.2 and Equation (3.20). The corollary states that the polyphase ma-

trices derived from principal components render the least mean-square recon-

struction error when only a few sub-bands are used to reconstruct the signal.

The next two propositions assure that these filters and polyphase matrices

form an orthonormal filter bank when all the principal components are used

(P =M).
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Proposition 4.2.3. [113]. The polyphase matrices constructed as in Proposi-

tion 4.2.1 and the corresponding filters from Equation (4.3) of Corollary 4.2.2

constitute a perfect reconstruction filter bank when all the sub-bands are con-

sidered for the reconstruction of the input signal.

The proof is straightforward by showing that the resulting polyphase

matrices are para-unitary; and that is exactly what Equation (3.20) flags. Now

a result similar to the Theorem 3.3.3 on necessary and sufficient conditions for

optimality:

Proposition 4.2.4. [113]. If a M-channel filter bank is designed according

to Proposition 4.2.1 and its corollary, then the sub-band signals are uncorre-

lated with each other the time-averaged input power spectral density matrix is

diagonalized by such a filter bank.

The detailed proofs of all these results can be found in [113], where

similar results are also derived for the familiar wide sense stationary input.

These results for the second-order real-valued processes with time-averaged

bounded auto-correlation show how the optimality approach in the principal

component sense emerged from Brillinger’s time-series analysis [17].

4.3 Definition of Principal Component Filter Banks

Consider a para-unitary filter bank in U∞,M (Figure 3.3). The input

is a wide sense cyclo-stationary discrete stochastic process with zero mean.

The given input power spectral density Sxx(·) may vanish at most on a set
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of measure zero. A principal component filter bank in U∞,M is sought such

that it minimizes the reconstruction error when the signal is approximated by

its first principal components. The expression for the reconstruction error is

given by Equation (4.1)

ε(P ) =
1

M

M−1∑

k=P

σ2vk , P ≤M

with the convention that the output sub-band variances are ordered decreas-

ingly. The minimization of this error amounts to maximization of the sum of

the variances of the sub-bands used to reconstruct the signal

S(P ) =
1

M

P−1∑

k=0

σ2vk , P ≤M .

It is desirable to link the principal component optimality with the cod-

ing gain, since the coding gain is such a widely used metric. In other words it is

desirable to answer the question: “ If a filter bank is such that the sum S(·) is

maximized in U∞,M for any value of P in {0, 1, . . . ,M − 1}, is the coding gain

of that filter bank also optimal in U∞,M?”. Or even better, for practical pur-

poses, the same question should be rephrased for classes C of filter banks that

are proper subsets of U∞,M , like causal finite impulse response filter banks.

The issue of comparing coding gain optimality with maximization of

S(·) is investigated first in U∞,M . A few preliminary theoretical results are

necessary and majorization theory is employed. See [15, 47, 48, 73, 9]. The def-

inition of the majorization relation and terminology was introduced by Hardy,
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Littlewood and Polya in [46] and the theory of majorization is studied exten-

sively by Marshall and Olkin in [73]. Many valuable applications to matrix

analysis can be found in the books by Horn and Johnson in [48, 47].

Definition 4.3.1. Consider the vectors σ, τ ∈ RM , σ = [σ0, σ1, . . . , σM−1]
T ,

τ = [τ0, τ1, . . . , τM−1]
T with the components ordered decreasingly

σ0 ≥ σ1 ≥ . . . ≥ σM−1, τ0 ≥ τ1 ≥ . . . ≥ τM−1 .

Define:

σ Â τ if

{∑P
k=0 σk ≥

∑P
k=0 τk, 0 ≤ P < M − 1∑M−1

k=0 σk =
∑M−1

k=0 τk
.

When σ Â τ it is said that σ majorizes τ (or τ is majorized by σ).

We may also view the entries of a vector as the elements of a set (with

some elements duplicated) and think of the majorization defined on sets as

well. The ordering of the components is a simplifying hypothesis for the use

of majorization in filter bank theory, since we always consider that the output

sub-band variances are ordered decreasingly.

Definition 4.3.2. A real valued function φ defined on a set S ⊂ RM is said

to be Schur-convex on S if

σ Â τ =⇒ φ(σ) ≥ φ(τ )

for all σ, τ in S. If σ Â τ =⇒ φ(σ) ≤ φ(τ ) then φ is said to be Schur-concave.

The next proposition connects the ordinary convex functions with the

majorization relation. See [73].
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Proposition 4.3.1. (Schur ). If I ⊂ R is an interval and g : I → R is convex

then the function φ defined as φ(σ) =
∑M−1

k=0 g(σk), σ = [σ0, σ1, . . . , σM−1]
T

is Schur-convex on IM .

These results are now applied to the theory of orthonormal filter banks.

Assume that the input variance is normalized: σ2x = 1. Recall that the sum of

the output sub-band variances is constant

M−1∑

k=0

σ2vk =M

as shown in Proposition 3.2.1. Each sub-band variance vector has only strictly

positive entries by Proposition 3.2.2, because we assume that the power spec-

tral density may vanish only on sets of measure zero. Note that this assumption

ensures that the coding gain is a well defined function of the sub-band vari-

ances for all filter banks in U∞,M . We also have the bound on the sub-band

variances

0 < σ2vk < 1, k = 0, 1, . . . ,M − 1 .

The power spectral density matrix of the wide sense stationary blocked input

is symmetric and positive semidefinite [38, 37]. An output sub-band variance

vector that majorizes all other sub-band variance vectors that are output from

filter banks in U∞,M corresponds to a filter bank that is optimal in the mean-

square projection error sense, and we call it a principal component filter bank.

Note that this optimality is over the unconstrained universe U∞,M . A formal
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definition of principal component filter banks for arbitrary classes in U∞,M will

be given after some preliminary theory.

We now connect this result to the coding gain. Denote by σ the

output sub-band variance vector σ = [σ0, σ1, . . . , σM−1]
T . From the arith-

metic/geometric mean inequality we conclude that the coding gain is greater

than one:

Gcoding : (0, 1)M → [1,∞) ,

Gcoding(σ) =
1

(
∏M−1

k=0 σ
2
vk
)1/M

.

The minimum value of the coding gain is attained when all the sub-band

variances are equal. Coding gain optimality, i.e., maximization of the coding

gain over U∞,M , is equivalent to minimization of the product of the output

sub-band variances. We investigate when this product attains its minimum.

Consider the convex function

g : (0,∞)→ R ,

g(σ) = − log(σ) .

We now write the function g of components of the sub-band variance vector,

σ = [σ2v0
, σ2v1

, . . . σ2vM−1
]T , sum up and obtain

M−1∑

k=0

(− log(σ2vk)) = M [
1

M

M−1∑

k=0

(− log(σ2vk))] =

= M log
1

(
∏M−1

k=0 σ
2
vk
)1/M

= M logGcoding(σ) .
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By Proposition 4.3.1 the function φ(σ) = logGcoding(σ) is a Schur-convex

function. The logarithm is a strictly increasing function, hence the inequality

log(Gcoding(σ)) ≥ log(Gcoding(τ )) is equivalent to Gcoding(σ) ≥ Gcoding(τ ) on

(0, 1)M . We conclude that

σ Â τ =⇒ Gcoding(σ) ≥ Gcoding(τ ) .

Remark 4.3.1. The previous result is a equivalent to saying that if a vector

σ majorizes a vector τ then the product of the entries of σ is less than the

product of the entries of τ [46].

The majorization of output sub-band variance vector and coding gain

optimality over U∞,M are therefore equivalent. Over the whole universe U∞,M

the optimum compaction gain and the optimum coding gain occur simulta-

neously, for the same filter bank – which is an ideal filter bank according to

the results from the previous chapter. The compaction gain optimality is un-

derstood in the sense of the construction from Section 3.5.2, the “peel-off”

procedure.

The results on coding gain and principal component optimalities are

coupled by the study of the output sub-band variance vector from the ma-

jorization perspective. Next the sub-band spectra are discussed.

Recall that Theorem 3.3.3 states that a necessary condition for coding

gain optimality is that the sub-band spectra satisfy the spectral majorization

as in Definition 3.2.2. Hence we investigate the equivalence of the next two
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inequalities:

σ2v0
≥ σ2v1

≥ ... ≥ σ2vM−1
, (4.4)

S0(e
iω) ≥ S1(e

iω) ≥ ... ≥ SM−1(e
iω), ω ∈ [0, 2π] . (4.5)

The output sub-band variances are given by

σ2vk =

∫ 2π

0

Sk(e
iω)dω/(2π) .

Obviously the spectral majorization implies sub-band variance ordering – in

the sense of Equation (4.4). It turns out that for an optimal filter bank in

U∞,M the converse also holds – see the proof of Theorem 3.3.2.

Remark 4.3.2. The equivalence between majorization of sub-band spectra and

that of the sub-band variances is valid only for the filter bank whose coding

gain cannot be increased in U∞,M . That filter bank is the one that diagonalizes

the input power spectral density matrix.

The vector of the diagonal elements of the output power spectral density

matrix is majorized by the vector of its eigenvalues at each frequency. By

Hadamard’s Inequality the product of the diagonal elements of the output

power spectral density matrix is greater than its determinant, which is the

product of its eigenvalues. Denote the output power spectral density matrix

by Svv(·) and denote by λk(·) its eigenvalues, calculated at each frequency.

For each ω ∈ [0, 2π] denote the output power spectral density matrix elements

by Skl(e
iω), k, l = 0, 1, . . . ,M − 1. then the vector of diagonal elements is:

s(eiω) = [S00(e
iω), S11(e

iω), . . . , SM−1,M−1(e
iω)]T .
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Let λ(·) be the eigenvector of Svv(·):

λ(eiω) = [λ0(e
iω), λ1(e

iω), . . . , λM−1(e
iω)]T .

Hadamard’s Inequality and the definition of majorization give, at each

ω ∈ [0, 2π]:

M−1∏

k=0

λk(e
iω) ≤

M−1∏

k=0

Skk(e
iω) and

λ(eiω) Â s(eiω) .

The last inequalities are the ones from Theorem 3.3.3. When the output power

spectral density matrix is diagonal, the vector of its eigenvalues majorizes

any vector of diagonal elements of any other output power spectral density

matrix from any other filter bank in U∞,M . That in turn means that the

corresponding output sub-band variance vector corresponding to the diagonal

power spectral density matrix majorizes the sub-band variance vector from

any other output power spectral density. A filter bank that diagonalizes the

input power spectral density matrix at each frequency is a coding gain optimal

filter bank by Theorem 3.3.3.

Although we have discussed optimality of filter banks over the whole

universe U∞,M , majorization theory and Remark 4.3.1 allow us to discuss

principal component optimality and coding gain optimality over subsets of

U∞,M . Consider a class of filter banks C j U∞,M . Denote by S ⊂ RM the

search space [9] of output sub-band variance vectors from all the filter banks

in C. Suppose there is a vector σ∗ ∈ S that majorizes any other sub-band
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variance vectors in S. Then by Remark 4.3.1 the filter bank with polyphase

matrix denoted by E∗(·) that outputs σ∗ is a coding gain optimal filter bank

over C. What can we infer about the the compaction gain from filters in C?

Since σ∗ majorizes any other variance vector in S, the compaction gain from

E∗(·) is also maximum over all filter banks in C – and to prove this assertion

we just write the majorization relation for the first component.

In conclusion, for any class of filter banks C j U∞,M the majorization

theory and the theory of optimal orthonormal filter banks guarantee that if

a sub-band variance vector σ∗ is a maximal element with respect to the ma-

jorization relation over the search space corresponding to the filter banks in C

then σ∗ is the output from an optimal coding gain (and optimal compaction

gain) filter bank, E∗(·). Moreover, the reconstruction error defined in Equation

4.1 is minimized when only the first P sub-bands are used to reconstruct the

signal, i.e., E∗(·) corresponds to a filter bank that is optimal in the principal

component sense.

A rigorous definition of principal component filter banks can be formu-

lated as:

Definition 4.3.3. [9] Consider a class of orthonormal uniform maximally

down-sampled M-channel filter banks C j U∞,M . A filter bank is a principal

component filter bank for the class C if its sub-band variance vector majorizes

the sub-band variance vector of any other filter in the class.

Remark 4.3.3. • The majorization relation is a partial order because it is
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reflexive, antisymmetric and transitive.

• The sub-band variance vector corresponding to a principal component

filter bank with the sub-band variances ordered decreasingly is unique

in U∞,M . That is because the majorization relation defined on the set of

sub-band variance vectors is antisymmetric.

• The output sub-band variance vectors from filters in U∞,M lie in a hyper-

plane of RM
+ , for each input. That is because the sum of the output

variances is constant by Proposition 3.2.1.

• Denote by S the set of all output sub-band variance vectors from a class

C ⊂ U∞,M and call it the search space

S =

{
σ ∈ RM

+

... σ = diag

(∫ 2π

0

Svv(e
iω)dω/(2π)

)
, E(·) ∈ C

}
.

On S the majorization is a relation of total order if M is 1 or 2 and a

partial order if M is greater than 2.

4.4 Construction of Infinite Impulse Response Princi-

pal Component Filter Banks

The approach to constructing optimal compaction filters in Theorem

3.4.1 can also be used to construct principal component filter banks. A valid

compaction filter satisfies the Nyquist(M) condition. An optimum compaction

filter maximizes its output variance (see Section 3.3). Therefore, in an opti-

mum compaction orthonormal filter bank, there is one filter whose output
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variance is maximum for the given input power spectral density, for all or-

thonormal filter banks in the class considered. For now the class of filters

considered is U∞,M .

From the definition of principal component filter banks it follows that

a principal component filter bank in U∞,M contains an optimum compaction

filter. In other words, a principal component filter bank is also an optimum

compaction filter bank. This result is proved by writing the majorization

relation for the first component of the output sub-band variance vector.

Optimizing coding gain is equivalent to minimizing the product of sub-

band variances; the optimum compaction gain is achieved for a filter bank

whose first component is the largest among all the first components of all the

output variance vectors in the class considered. When sequential optimum

compaction filters are constructed following the “peel-off” procedure in The-

orem 3.4.1 the resulting ideal filter bank is coding gain optimal in U∞,M . It

is shown that the output sub-band variance of such a filter bank majorizes all

the output variances from filter banks in U∞,M . See Vaidyanathan [118].

Proposition 4.4.1. Vaidyanathan [118]. Iterative construction of optimum

compaction filters using Theorem 3.4.1 produces a principal component filter

bank for U∞,M .
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4.5 Optimality of Principal Component Filter Banks

Optimality of principal component filter banks is discussed in the pres-

ence of additive quantizer noise.

When a signal is approximated by its first P sub-bands, the reconstruc-

tion error is, as in Equation (4.1)

ε(P ) =
1

M

M−1∑

k=P

σ2vk , P ≤M .

This error may be generically expressed in terms of a continuous function g of

the output sub-band variances [9, 115]:

g : R+ \ {0} → R ,

φ(σ) =
M−1∑

k=0

g(σ2vk), σ = [σ2v0
, σ2v1

, . . . , σ2vM−1
]T .

Optimality of a filter bank may be considered with respect to φ. If the objective

function is Schur-convex (Schur-concave) and a maximum(minimum) of φ is

sought then a principal component filter banks is optimal with respect to the

criterion expressed by φ.

Consider a sub-band coder as in Figure 1.9 with M channels operated

by an orthonormal filter bank. The input variance is σ2x and the output sub-

band variances are σ2vk and the average of the sub-band variances is equal to

the input variance (Proposition 3.2.1). If the quantizers operate at high bit

rate, the sub-band quantizer noise is given by the standard noise model:

σ2qk = c 2−bkσ2vk , k = 0, 1, . . . ,M − 1
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and the given average bit rate is b =
∑M−1

k=0 bk. Equation 1.14 gives the coding

gain

GSBC =
(1/M)

∑M−1
k=0 σ

2
vk

(
∏M−1

k=0 σ
2
vk
)1/M

and it is maximum when the filter bank is a principal component filter bank

– as shown in Section 4.3.

However, not all the quantization processes operate at high bit rate,

hence it is desirable to discuss the optimality of principal component filter

banks at arbitrary bit rates. For transform coders, the Karhunen-Loève trans-

form – which is the principal component filter banks for the class of memoryless

filter banks – is optimal even when the quantizers do not operate at high bit

rates – as shown by Huang and Schultheiss [51] (see Section 2.5). Kirac and

Vaidyanathan [61] propose a more general quantizer model and show that

principal component filter banks in U∞,M are optimal in the presence of quan-

tizers that operate at arbitrary bit rates. Optimality is understood in the

coding gain sense.

With the more general model, the sub-band noise variances are

σ2qk = f(bk)σ
2
vk
, k = 0, 1, . . . ,M − 1 . (4.6)

There is a single quantization function for all the channels. This simplification

is in general not true unless the input is Gaussian. The functions that model

the quantizer should be independent of the filter bank; however, the quantizers

are optimized to their input probability density function, which is in turn
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influenced by the filter bank. When the input is Gaussian the output sub-

band signals are also Gaussian and the quantizers and the filters can be chosen

independently. Kirac and Vaidyanathan prove:

Theorem 4.5.1. With a general quantizer model described by Equation (4.6),

a principal component filter bank, if it exists, minimizes the reconstruction

error of an orthonormal sub-band coder for all bit budgets and bit allocations.

Remark 4.5.1. The optimization of the filter bank and the bit allocation are

now decoupled. Even if the bit allocation strategy is not optimal, a principal

component filter bank is optimal – with respect to the coding gain and mean-

square reconstruction error.

Remark 4.5.2. Consider f(bk) = c constant over all channels. This is the equal

bit allocation strategy. In this case the reconstruction error is, by Equation

(4.1), ε = cσ2x, independent of the choice of the filter bank. Hence orthonormal

filter banks do not yield any coding improvement if equal bit allocation is

employed.

From the previous theorem it follows that principal component filter

banks over any class C ⊂ U∞,M are optimal independent of the bit rates and

the bit allocation strategy as long as the quantizer model relies on only one

underlying quantization function.
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4.6 New Result on Existence of Optimal Filter Banks

in Finite Impulse Response Classes

The important results presented in the previous sections ensure the

existence and provide the design of principal component filter banks in the

unrestricted class U∞,M with infinite impulse response filters. The definition

of principal component filter banks is applicable to any class of filters C j

U∞,M ; however, there are no results on existence and design of finite impulse

response principal component filter banks with more than two channels, except

for memoryless filter banks for which the Karhunen-Loève transform is the

principal component filter bank.

The coding gain is a universally used metric for the performance of a

filter bank in a sub-band coding scheme. It is therefore reasonable to seek

first a coding gain optimal finite impulse response filter bank in a class Uµ, M ,

with µ > 0, before we investigate if such a coding gain optimal filter bank is

also a principal component filter bank. We know that the converse is true: a

principal component filter bank in a class C j U∞,M is a coding gain optimal

filter bank over that class. We now show that in each finite impulse response

class there exists a filter bank that renders the optimum coding gain over all

the filters in the class. We give an existence proof and in Section 4.7.4 we

outline an algorithm to find these optimal filters for both the real and the

complex case.

In [119] Vaidyanathan and Akkarakaran review the theory and appli-

cations of orthonormal filter banks, including transform coders. In regard to
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the class of orthonormal finite impulse response filter banks with more than

two channels, they state (page 284):

“ For this class there is no procedure to find the globally optimal finite

impulse response orthonormal filter bank to maximize the coding gain, even

under high bit-rate assumptions”.

The next theorem provides the theoretical support for a successful al-

gorithm to find coding gain optimal filter banks. It guarantees the existence

of coding gain optimal finite impulse response orthonormal filter banks.

Theorem 4.6.1. Let an input signal be such that its power spectral density

is integrable and it vanishes at most on a set of measure zero. For any such

signal there exists a filter bank that maximizes the coding gain over the class

of causal finite impulse response orthonormal filter banks with a given finite

McMillan degree and a fixed number of channels.

Let the number of channels be a positive integer M . Consider the set

Uµ,M of causal finite impulse response orthonormal M -channel filter banks

with McMillan degree µ. The corresponding polyphase matrices are unitary

matrices when the argument z is on the unit circle.

Recall from Section 3.2.1 that the polyphase matrix of a perfect recon-

struction uniform orthonormal M-channel filter bank with McMillan degree µ

is:

E(z) =
M∏

k=1

(
I + (−1 + z−1)vkv

†
k

)
U , for |z| = 1
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where ‖vk‖ = 1, k = 1, 2, . . . ,M and U is a unitary matrix. Filter banks

are completely determined by their values on the unit circle z = eiω with

ω ∈ [0, 2π]; however, from now on in this section we only display ω instead of

eiω in the representation of the polyphase matrix.

We prove the theorem with the aid of a few preliminary results.

Definition 4.6.1. [96]. Two norms N1 and N2 on a vector space X are said

to be equivalent if there exists positive constants α and β such that

αN1 ≤ N2 ≤ βN1 .

Proposition 4.6.2. [25, 47]. All norms on a finite dimensional vector space

are equivalent.

Theorem 4.6.3. [25, 47]. In a finite-dimensional normed linear space, each

closed and bounded set is compact.

We now define the entities used in the proof of Theorem 4.6.1. We

follow in general the notation from Golub and van Loan [43] and Horn and

Johnson [47].

• The norm used for vectors is the Euclidean norm, unless otherwise spec-

ified.

• The subordinate 2-norm – also called the operator 2-norm, or simply the

2-norm [43, 47] is:

‖A‖2 = sup
‖x‖=1

‖Ax‖ .
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If a matrix norm is used without an index, it is understood that it is the

subordinate 2-norm.

• The complex algebra of M × M complex matrices equipped with the

2-norm is denoted by CM×M . Note that this is a Banach algebra [96].

We note that all norms on CM×M are equivalent by Proposition 4.6.2

• Denote the set of complex unit norm vectors of dimension M by SM−1

and the group of M ×M unitary matrices by U(M):

S
M−1 = {v ∈ CM ... ‖v‖ = 1} ,

U(M) =

{
U ∈ CM×M ... U †U = UU † = I

}
.

These sets are compact because they are closed and bounded in finite

dimensional linear spaces CM and CM×M , respectively [47].

• Let C([0, 2π],CM×M ) denote the Banach space of continuous matrix-

valued functions equipped with the sup norm:

‖F‖sup = sup
ω∈[0,2π]

‖F (ω)‖2 .

• The set (SM−1)µ × U(M) is compact in (CM)µ × CM×M [25].

We will show that the coding gain is a continuous function defined on

the compact set (SM−1)µ × U(M) – see Figure 4.1.

Lemma 4.6.4. Let Dk be compact sets in finite-dimensional normed linear

spaces Xk, k = 1, 2 and let Fk be continuous maps from Dk to a Banach
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Figure 4.1: Function diagram for coding gain

algebra Z. Then the tensor product

(F1 ⊗ F2)(x1, x2) = F1(x1)F2(x2), xk ∈ Dk, k = 1, 2

is continuous.

Proof. Let a norm be defined on X1 ×X2 as:

‖(x1, x2)‖∞ = max{‖x1‖, ‖x2‖}, for all (x1, x2) ∈ X1 ×X2

where the norms on the right hand side are on X1 and X2, respectively. Let

M = max
k=1,2

{ sup
xk∈Dk

‖Fk(xk)‖} .
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Let (x1, x2) ∈ D1 × D2 and ε > 0. From the continuity of F1 and F2 there

exists δk > 0 such that for all yk ∈ Dk satisfying ‖xk − yk‖ < δk, k = 1, 2

M ‖Fk(xk)− Fk(yk)‖ <
ε

2
.

Let δ = min{δ1, δ2}. Then for all ‖(x1, x2)− (y1, y2)‖∞ < δ we have:

‖(F1 ⊗ F2)(x1, x2)− (F1 ⊗ F2)(y1, y2)‖

= ‖F1(x1)F2(x2)− F1(x1)F2(y2) + F1(x1)F2(y2)− F1(y1)F2(y2)‖

≤ ‖F1(x1)(F2(x2)− F2(y2))‖+ ‖(F1(x1)− F1(y1))F2(y2)‖

≤ ‖F1(x1)‖ ‖F2(x2)− F2(y2)‖+ ‖F2(x2)‖ ‖F1(x1)− F1(y1)‖

<
ε

2
+

ε

2

= ε .

This shows that the tensor product F1 ⊗ F2 is continuous. We used the result

from [95] page 91: a continuous function defined from a compact set of a metric

space to another metric space is uniformly continuous.

A similar result is stated in the next remark, with a proof that parallels

the one from the previous lemma.

Remark 4.6.1. Let Fk be continuous maps from finite-dimensional normed

linear spaces Xk, k = 1, 2 to a Banach algebra Z. Then the tensor product

F1 ⊗ F2 :→ Z ,

(F1 ⊗ F2)(x1, x2) = F1(x1)F2(x2), xk ∈ Xk, k = 1, 2

is continuous.
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Remark 4.6.2. Note that by using the associativity of the multiplicative oper-

ation in Z, we infer the continuity of the tensor product of any finite number

of functions that satisfy the hypothesis of the previous lemma.

Lemma 4.6.5. Let v ∈ SM−1. Define V v : [0, 2π]→ CM×M by:

Vv(ω) = I + (−1 + e−iω)vv† .

Then Vv is an element of C([0, 2π], CM×M).

Proof. Let ε > 0 and α ∈ [0, 2π]. Then there exists δ > 0 such that for

all ω ∈ [0, 2π] with |α − ω| < δ the inequality | sin α−ω
2
| < ε

2
holds, by the

continuity of the sine function on [0, 2π]. We now evaluate

‖Vv(α)− Vv(ω)‖ = ‖(e−iα − e−iω)vv†‖

≤ 2 | sin α− ω

2
|

< ε .

Lemma 4.6.6. The map v 7→ Vv is continuous from SM−1 to C
(
[0, 2π],CM×M

)
.

Proof. Let v,w in SM−1. Evaluate:

‖Vv − Vw‖sup = sup
ω∈[0,2π]

‖Vv(ω)− Vw(ω)‖

= sup
ω∈[0,2π]

‖(−1 + e−iω)(vv† −ww†)‖

≤ 2‖v(v† −w†) + (v −w)w†‖

≤ 4‖v −w‖ .
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We conclude that ‖Vv − Vw‖sup → 0 as ‖v −w‖ → 0.

Lemma 4.6.7. Let θ = (v1,v2, . . . ,vµ,U ) be an element of (SM−1)µ×U(M).

The mapping

θ 7→ Eθ = Vv1
Vv2

· · ·Vvµ
U

is continuous from (SM−1)µ × U(M) to C ([0, 2π], U(M)), where

U(M) ⊂ CM×M .

Proof. Observe that the map E is the tensor product of the maps

Vvk
, k = 1, 2, . . . , µ and U , all defined on compact sets in finite-dimensional

linear spaces and with values in the Banach algebra of M ×M complex ma-

trices. The result of the lemma is therefore a consequence of Lemma 4.6.4 and

Remark 4.6.2.

Lemma 4.6.8. Let S be in L1([0, 2π], CM×M ). The mapping

E 7→ ESE†

is continuous from C([0, 2π], U(M)) to L1([0, 2π], CM×M).

Proof. Denote by s the value of the L1 norm of S using the operator (sub-

ordinate) 2-norm for the matrices that are the values of S evaluated at each

ω:

s =

∫ 2π

0

‖S(ω)‖dω <∞ .

Let E,F be two elements of C([0, 2π], U(M)) such that

s ‖E − F ‖sup <
ε

2
.

123



That means in turn:

s

(
sup

ω∈[0,2π]

‖(E − F )(ω)‖
)
<
ε

2
.

The same bound holds for the conjugate transpose.

Evaluate now the L1 norm:
∫ 2π

0

‖E(ω)S(ω)E†(ω)− F (ω)S(ω)F †(ω)‖dω

=

∫ 2π

0

‖E(ω)S(ω)(E†(ω)− F †(ω))

+(E(ω)− F (ω))S(ω)F †(ω)‖dω

≤
∫ 2π

0

‖E(ω)S(ω)(E†(ω)− F †(ω))‖dω

+

∫ 2π

0

‖(E(ω)− F (ω))S(ω)F †(ω)‖dω

≤
∫ 2π

0

‖E(ω)‖ ‖S(ω)‖ ‖E†(ω)− F †(ω)‖dω

+

∫ 2π

0

‖E(ω)− F (ω)‖ ‖S(ω)‖ ‖F †(ω)‖dω

≤
(

sup
ω∈[0,2π]

‖E†(ω)− F †(ω)‖
)∫ 2π

0

‖S(ω)‖dω

+

(
sup

ω∈[0,2π]

‖E(ω)− F (ω)‖
)∫ 2π

0

‖S(ω)‖dω

<
ε

2
+
ε

2

= ε .

Lemma 4.6.9. If E is an element of L1([0, 2π], CM×M) then the map

E 7→ I(E) =

∫ 2π

0

E(ω)dω ∈ CM×M
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is continuous.

Proof. Let ε > 0 and let E,F ∈ L1([0, 2π],CM×M ) be such that

‖E − F ‖L1 < ε, that is:

∫ 2π

0

‖E(ω)− F (ω)‖dω < ε .

Evaluate:

‖I(E)− I(F )‖

= ‖
∫ 2π

0

(E(ω)− F (ω)) dω‖

≤
∫ 2π

0

‖E(ω)− F (ω)‖dω

< ε .

Lemma 4.6.10. If Σ ∈ CM×M then the map

Σ 7→ σ = diag(Σ) ∈ CM

is continuous.

Proof. The map diag is linear. Every linear map on a finite-dimensional

normed linear space is continuous [25, 95].

Lemma 4.6.11. Let σ = [σ1, σ2, . . . , σM ]T ∈ (0, 1)M ⊂ RM . The map

σ 7→ CG(σ) =
1

(
∏M

k=1 σk)1/M

is continuous.
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Proof. The product of the components of the vector σ is the tensor product

of uniformly continuous maps

Fk : RM → R ,

Fk(σ) = Fk([σ1, σ1, . . . , σM ]T ) = σk ,

restricted to (0, 1)M ⊂ RM . This tensor product is continuous – see Remark

4.6.2 and Remark 4.6.1. The map CG is a composition of three maps: a

product of the components of the vector σ, a root of order M and an inverse,

all continuous.

We can now prove Theorem 4.6.1:

Assume that the input variance is normalized, that is, σ2x = 1. Since the

input power spectral density does not vanish on any set of positive measure,

it follows that the output sub-band variances are positive, for all orthonormal

filter banks in Uµ,M , and by Proposition 3.2.1 their average is 1:

0 < σ2vk < 1, k = 1, 2, . . . ,M , (4.7)

M∑

k=1

σ2vk = 1 .

The input matrix Sxx is a power spectral density matrix. The coding gain is

the ratio of the arithmetic and geometric mean of the output variances, given

in Equation 3.13, hence it is greater than or equal to 1.

The coding gain is a real-valued continuous function defined on the

compact set (SM−1)µ × U(M). By the extreme value theorem (Cheney [25]
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page 16), there exists a point in θ0 ∈ (SM−1)µ × U(M) such that

Gcoding(θ0) = max
θ∈(SM−1)µ×U(M)

Gcoding(θ) .

The functional diagram is shown in Figure 4.1.

The theorem assures existence of optimal filter banks only within the

class of causal orthonormal filter banks with McMillan degree µ, not on the

whole universe U∞,M .

4.7 Study of Optimal Filter Banks for Autoregressive

Input Signals

Motivation.

The question of existence of principal component filter banks for finite

impulse response classes is of great interest among the digital signal processing

communities. Most results in the literature follow [113] and for more than

two channels the resulting filters are ideal unrealizable filters. An intense

theoretical effort and design strategies were aimed at developing finite impulse

response principal component filter banks. The authors of [62] claim that

principal component filter banks do not exist for the class of finite impulse

response three channel para-unitary filter banks with McMillan degree 1. Our

study is motivated by their claim and since there is no indication in their paper

on the procedure used to create the optimal filter banks with respect to the

coding and compaction gains, we decided to reproduce their experiments [90].

It was this study that led to the Theorem 4.6.1 on existence of finite impulse
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response optimal filter banks. We present the study and then comment on the

results from [62].

4.7.1 The input signal

Consider an autoregressive AR(1) discrete time stochastic process x : Z → C

described by:

x[n] = ρx[n− 1] + w[n], n ∈ Z (4.8)

where w : Z → C is a Gaussian white noise process with variance σ2w and

|ρ| < 1.

Section 1.2.2 gives all the details on the model of an autoregressive AR(1)

signal and the autocorrelation and power spectral density matrices for the

blocked version of this signal. Assume that the input variance is unity.

The blocked signal is input to an orthonormal causal filter bank with

McMillan degree 1. The filter banks have two and three channels.

The corresponding analysis polyphase matrices are para-unitary (Equa-

tion (3.6)). The analysis polyphase matrix of a finite impulse response filter

bank with McMillan degree one can be written as in Equations (3.7) and (3.8)

E(z) = V (z)U ,

V (z) = I + (−1 + z−1)vvT , ‖v‖ = 1

and also as

E(z) = E0 + z−1E1 . (4.9)
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Since E is para-unitary the terms E0 and E1 obey:

detE0 = 0, detE1 = 0, E0E1 = 0 . (4.10)

The study is divided in two parts: two-channel filter banks and three channel

filter banks.

4.7.2 Two channel para-unitary filter banks

The input autoregressive AR(1) signal is passed through a real finite im-

pulse response orthonormal two-channel maximally down-sampled filter bank

with McMillan degree of 1. The blocked input signal is

x[n] = [ x[2n] x[2n− 1] ]T , n ∈ Z. (4.11)

The analysis polyphase matrix can be expressed in terms of unitary matrices

and dyadic-based matrices – see Equations (3.7) and (3.8):

V (z) = I + (−1 + z−1)vvT , |z| = 1

where I is the identity matrix in R2×2 and v ∈ R2 is a unit-norm vector. We

can describe the whole finite impulse response class with McMillan degree 1,

U1,2 by taking:

v : [0, 2π]→ R, (4.12)

U : [0, 2π]→ R2×2,

V : [0, 2π]× [0, 2π]→ C2×2,
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v(α) = [cosα sinα]T ,

U (θ) =

[
cos θ sin θ
− sin θ cos θ

]
,

V (α, eiω) =

[
sin2 α + e−iω cos2 α (−1 + e−iω) cosα sinα

(−1 + e−iω) cosα sinα cos2 α + e−iω sin2 α

]
.

The analysis polyphase matrix can be chosen either as E(z) = V (z)U

or E(z) = UV (z). (Here we emphasize only the memory argument, z). Since

V is periodic in the first argument with period π, E is also periodic:

E(α + π, θ, eiω) = E(α, θ, eiω) .

Thus the whole U1,2 class has its polyphase matrices described by three argu-

ments:

E : [0, π]× [0, 2π]× [0, 2π]→ C2×2 .

Note. It suffices to consider only the orthogonal matrices with determinant

1; the same values of the variances are obtained when the orthogonal matrix

has the determinant -1, with the minus sign attached to cos θ ( Murnaghan

[83]). The autocorrelation matrix is:

Rxx(k) =





[
1 ρ

ρ 1

]
, k = 0

ρ2k

[
1 ρ

ρ−1 1

]
, k > 0

ρ−2k

[
1 ρ−1

ρ 1

]
, k < 0
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The input power spectral density matrix is

Sxx(z) = Rxx(0) +
∞∑

k=1

Rxx(k)z
−k +

∞∑

k=1

Rxx(−k)zk

=

[
1 ρ
ρ 1

]
+

ρ2z−1

1− ρ2z−1

[
1 ρ
ρ−1 1

]
+

ρ2z

1− ρ2z

[
1 ρ−1

ρ 1

]

and it easily verifies that the power spectral density matrix is pseudo-circulant.

The Karhunen-Loève transform matrix for the autoregressive AR(1) input

with correlation coefficient ρ is a discrete Fourier transform matrix because

the autocorrelation matrix is circulant [127]:

UKLT =

[
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

]

and it satisfies:

UKLTRxx(0)U
T
KLT =

[
1 + ρ 0
0 1− ρ

]
.

For a correlation coefficient ρ of 0.9 the eigenvalues of the auto-covariance

matrix are λ1 = 1.9 and λ2 = 0.1 and the theoretical coding gain as defined

in Equation (3.13) is GcodingKLT = 2.294157.

The sum of the output variances is constant, 2, therefore the analysis

of the first input variance suffices to determine the behaviour of the coding

gain. It is the coding gain that reflects the performance of a filter bank; we

express it simply as:

CG(α, θ) =
1√

σ2v0
(α, θ)σ2v1

(α, θ)
=

1√
σ2v0

(α, θ)(2− σ2v0
(α, θ))

(4.13)
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and its partial derivatives:

∂CG(α, θ)

∂α
=

−1
2

[σ2v0
(2− σ2v0

)]−3/2(σ2v0
− 1)

∂σ2v0
(α, θ)

∂α
, (4.14)

∂CG(α, θ)

∂θ
=

−1
2

[σ2v0
(2− σ2v0

)]−3/2(σ2v0
− 1)

∂σ2v0
(α, θ)

∂θ
.

Note that values of 1 for the output variances correspond to the trivial case

of coding gain of 1, i.e., no gain (that is: the filters are just down-sampling

operations) and a value of 2 for σ2v0
implies a null σ2v1

which would contradict

the orthonormality and equivalently the perfect reconstruction property of the

filter bank.

The maximum coding gain occurs when the first variance attains an extreme

value, either maximum or minimum and trivially the compaction gain behaves

as the first variance with respect to the arguments (α, θ) ∈ [0, π]× [0, 2π]. The

expressions for the output variances are determined analytically with Maple

and so are their critical points and the attributes of the critical points (saddle,

extrema). There are two possibilities of factoring the polyphase matrix with

respect to the order of the dyadic structure and the unitary transform and we

study each case separately.

4.7.2.1 Case E(z) = V (z)U

A first evaluation for the analysis polyphase matrix is:

E(α, θ, eiω) = V (α, eiω)U(θ), with U and V from Equation (4.12).

The variances are:
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σ2v0
(α, θ) = 1− 0.684 cos2 α cos θ sin θ + 0.684 cos4 α cos θ sin θ

+1.8 cos θ sin θ − 0.342 cosα sinα cos2 θ

+0.684 cos3 α sinα cos2 θ − 0.342 cos3 α sinα

and

σ2v1
(α, θ) = 1 + 0.342 cosα sinα cos2 θ + 0.684 cos2 α cos θ

−1.8 cos θ sin θ sin θ + 0.342 cos3 α sinα

−0.684 cos4 α cos θ sin θ − 0.684 cos3 α sinα cos2 θ .

The next four equations show the periodicity of the variances:

σ2vk(α+ π, θ) = σ2vk(α, θ) , (4.15)

σ2vk(α, θ + π) = σ2vk(α, θ), k = 0, 1.

and we restrict the study of the coding gain on the interval [0, π]× [0, π] ⊂ R2.

Table 4.1 shows critical values of the first variance and the values of the coding

gain and the “Comments” column records attributes of the coding gain.

Remark 4.7.1. The minimum values of the coding gain are not listed. That

is because the extreme values of the coding gain in the table are calculated

from the extreme values of the first variance. When the first variance attains a

minimum value, the coding gain attains a maximum value because the second

variance reaches a maximum. The minimum value of the coding gain is reached

when σ2v0
= σ2v1

.
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α θ σ2v0
Coding gain Comment

π/4 π/4 1.72900 1.46089 saddle
3π/4 3π/4 0.27100 1.46089 saddle

1.83973 .76397 1.92216 2.58538 maximum
1.30185 2.37761 0.07783 2.58538 maximum
2.87265 .80681 1.92216 2.58538 maximum
.26893 2.33477 0.07783 2.58538 maximum

Table 4.1: Critical points for variances and corresponding coding gain values

The first variance and the coding gain are shown in Figures 4.2 and

4.3 respectively. When the matrix U is chosen to be the constant ma-
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Figure 4.2: First variance : E(z) = V (z)U

trix corresponding to the Karhunen-Loève transform of the input signal, i.e.,

U (θ) = U (π/4) = UKLT we obtain the maximum coding gain of 2.57284 at

values of α ∈ {− arctan(11/4+
√
3+kπ, k = 0, 1} with corresponding variances

of 1.92137 and .078624. When we compare these values with the values in Ta-

ble 4.1, we conclude that the coding gain is not maximized when the matrix

U is the Karhunen-Loève transform of the input and it can be concluded that
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Figure 4.3: Coding gain: E(z) = V (z)U

optimization by an iterative approach, one McMillan degree up at a time is not

possible. Figures 4.4, 4.5, 4.6 and 4.7 show the first variance and the coding

gain and their derivatives for this particular choice of E(z) = V (z)UKLT .

The first variance
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Figure 4.4: First variance: E(z) = V (z)UKLT
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Derivative of the first variance

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.5 1 1.5 2 2.5 3

angle

Figure 4.5: Derivative of the first variance: E(z) = V (z)UKLT

4.7.2.2 Case E(z) = UV (z)

In terms of its factors, the analysis polyphase matrix is: E(α, θ, eiω) =

U (θ)V (α, eiω), with U and V as in Equation (4.12). The variances are:

σ2v0
(α, θ) = 1− 0.342 cos3 α sinα + 0.342 cosα sinα

+1.458 cos θ sin θ + 0.684 cos3 α sinα cos2 θ

−0.342 cosα sinα cos2 θ + 1.026 cos2 α cos θ sin θ

−0.684 cos4 α cos θ sin θ ,

and

σ2v1
(α, θ) = 1− 1.458 cos θ sin θ − 0.684 cos3 α sinα cos2 θ

+0.684 cos4 α cos θ sin θ − 1.026 cos2 α cos θ sin θ

+0.684 cosα sinα cos2 θ − 0.342 cosα sinα

+0.342 cos3 α sinα .
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 Coding gain
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Figure 4.6: Coding gain: E(z) = V (z)UKLT

Derivative of the oding gain
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Figure 4.7: Derivative of the coding gain: E(z) = V (z)UKLT

The output variances satisfy Equations (4.15) and are periodic in both ar-

guments with period π. We list in Table 4.2 the critical points (α, θ) ∈

[0, π)× [0, π). These critical points and their attributes (saddle and extrema)

are determined analytically with Maple. The “Comments” column refers to

attributes of the coding gain. Remark 4.7.1 justifies the absence of minimum
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values for the coding gain in the table. The first variance and the coding gain

α θ σ2v0
Coding gain Comment

0 π/4 1.72900 1.46089 saddle
0 3π/4 0.10000 2.29415 saddle

π/2 π/4 1.729 1.46089 saddle
π/2 3π/4 0.27100 1.46089 saddle

.53787 .80681 1.92216 2.58538 maximum
2.60371 .76397 1.92216 2.58538 maximum
.53787 2.37761 0.07783 2.58538 maximum

2.60371 2.33477 0.07783 2.58538 maximum

Table 4.2: Critical points for variances and corresponding coding gain values

are shown in Figures 4.8 and 4.9 respectively. The maximum value of the cod-
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Figure 4.8: The first variance: E(z) = UV (z)

ing gain is the same as for the previous case E(z) = V (z)U but it is attained

at different points. We next show that at the points where the coding gain

is maximized the matrix U(θ) is the Karhunen-Loève transform of its input

[118, 117, 80], i.e., we verify that U diagonalizes the auto-covariance matrix of

the signal w, denoted Rww(0) (see Figure 4.10). In polyphase representation
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Figure 4.10: Factorization of the polyphase matrix, E(z) = UV (z)

the dyadic component V can be decomposed as:

V (α, z) = V 0(α) + z−1V 1(α) (4.16)
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with

V 0(α) =

[
sin2 α − cosα sinα

− cosα sinα cos2 α

]
,

V 1(α) =

[
cos2 α cosα sinα

cosα sinα sin2 α

]
.

Note that V 0 and V 1 are real and symmetric matrices. The output w is a

function of the angle α ∈ [0, π) and in the polyphase representation w[n] is :

w[n] = V 0x[n] + V 1x[n− 1] (4.17)

and with x[n] from Equation (4.11); the auto-covariance is

Rww(0) = E{w[n]w†[n]}

= E{[V 0x[n] + V 1x[n− 1]][V 0x[n] + V 1x[n− 1]]†}

= V 0E{x[n]x†[n]}V T
0 + V 0E{x[n]x†[n− 1]}V T

1

+V 1E{x[n− 1]x†[n]}V T
0 + V 1E{x[n− 1]x†[n− 1]}V T

1

= V 0Rxx(0)V
T
0 + V 0Rxx(1)V

T
1

+V 1Rxx(−1)V T
0 + V 1Rxx(0)V

T
1 .

Recall that the autocorrelation matrices are:

Rxx(0) =

[
1 ρ
ρ 1

]
,

Rxx(1) = ρ2
[

1 ρ
ρ−1 1

]
,

Rxx(−1) =

[
1 ρ−1

ρ 1

]
.
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The auto-covariance matrix of w evaluated at each argument α,

Rww(0)(α) is:

[
−0.342 cosα sin3 α + 1 −0.342 cos4 α + 0.513 cos2 α + 0.729

−0.342 cos4 α + 0.513 cos2 α + 0.729 0.342 cosα sin3 α + 1

]
.

We verified analytically with Maple that at all the critical points the matrix

U diagonalizes the matrix Rww(0), the auto-covariance of its input. The

eigenvalues obtained are the extreme values for the variances rendering maxi-

mum coding gain or the variances corresponding to other critical points (saddle

or minimum for coding gain). This behaviour of U acting upon Rww(0) is

expected because U is now a simple transform coder and the maximum cod-

ing gain is rendered by the Karhunen-Loève transform of the input to U , i.e.

when U diagonalizes Rxx(0). This is just a reassuring result; the search for

the principal component filter bank is still an open problem since we have to

design the dyadic-based structure V of the principal component filter bank

polyphase matrix. Once V is known together with the input autocorrelation

or power spectral density, finding U is an easy task. Numerically, we find U

and the optimal filter bank guaranteed by Theorem 4.6.1 by:

• generate V as an expression of a vector α ∈ [0, π]µ ⊂ Rµ, with µ being

the McMillan degree

• for each α diagonalize the matrix Rww(0) which depends on α. Select

the largest eigenvalues – these are produced by the sought unitary ma-

trix U that is a factor of the principal component filter bank polyphase

matrix.
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This procedure is an effective algorithm whose success is guaranteed by The-

orem 4.6.1. When the power spectral density input is known as a function of

frequency, Equations (3.11), (3.12) and (4.12) can be used to determine ana-

lytically the optimal filter bank – and in this case it is the principal component

filter bank, too. There is only the practical limitation on the McMillan degree

of the filter bank sought. The coding gain increases with the McMillan degree.

For practical purposes, in applications where the input can be modeled as an

autoregressive AR(1) signal, a ratio of the output variances of 1.922/0.078 as

we obtain in our study is very good. Filter banks with order one polyphase

render very good coding gain for this type of signals.

4.7.3 Three-channel filter banks

The AR(1) signal is input to a real finite impulse response orthonormal

uniform three channel maximally down-sampled filter bank with McMillan

degree 1. The blocked version of the input signal is:

x[n] = [x[3n] x[3n− 1] x[3n− 2]]T , n ∈ Z.

We express the analysis polyphase matrix as in Section 3.2, Equations (3.7)

and (3.8):

E(z) = V (z)U ,

V (z) = I + (−1 + z−1)vvT , |z| = 1.

The matrix U is unitary, I is the identity matrix in R3×3 and v ∈ R3 is a unit-

norm vector. The whole finite impulse response class U1,3,O can be described
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by:

v : [0, π]× [0, 2π]→ R3, (4.18)

U : [0, 2π]× [0, π]× [0, 2π]→ R3×3,

V : [0, π]× [0, 2π]× [0, 2π]→ C3×3,

v(α, β) = [cosα sinα cos β sinα sin β]T ,

V (α, βeiω) = I + (−1 + e−iω)v(α, β)vT (α, β) ,

U (φ, ψ, θ) =



U11(φ, ψ, θ) U12(φ, ψ, θ) U13(φ, ψ, θ)
U21(φ, ψ, θ) U22(φ, ψ, θ) U23(φ, ψ, θ)
U31(φ, ψ, θ) U32(φ, ψ, θ) U33(φ, ψ, θ)




where

U11(φ, ψ, θ) = cosψ cosφ− cos θ sinφ sinψ

U12(φ, ψ, θ) = cosψ sinφ+ cos θ cosφ sinψ

U13(φ, ψ, θ) = sinψ sin θ

U21(φ, ψ, θ) = − sinψ cosφ− cos θ sinφ cosψ

U22(φ, ψ, θ) = − sinψ sinφ+ cos θ cosφ cosψ

U23(φ, ψ, θ) = cosψ sin θ

U31(φ, ψ, θ) = − sin θ sinφ

U32(φ, ψ, θ) = − sin θ cosφ

U33(φ, ψ, θ) = cos θ .

Denote

DE = [0, π]× [0, 2π]2 × [0, 2π]× [0, π]× [0, 2π] ⊂ R6 .
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Thus the analysis polyphase matrix of filter banks in the class U1,3,O is a

function:

E : DE → C3×3.

The autocorrelation matrix is a Toeplitz matrix:

Rxx(k) =







1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1


 , k = 0

ρ3k




1 ρ ρ2

ρ−1 1 ρ

ρ−2 ρ−1 1


 , k > 0

ρ−3k



1 ρ−1 ρ−2

ρ 1 ρ−1

ρ2 ρ 1


 , k < 0

.

The input power spectral density matrix is:

Sxx(z) =



1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1


+

ρ3z−1

1− ρ3z−1




1 ρ ρ2

ρ−1 1 ρ
ρ−2 ρ−1 1




+
ρ3z

1− ρ3z



1 ρ−1 ρ−2

ρ 1 ρ−1

ρ2 ρ 1


 .

and it can easily be verified that it is pseudo-circulant. Next, we determine

the Karhunen-Loève transform matrix for the AR(1) signal with correlation

coefficient 0.9. We expect to have a matrix different from a discrete Fourier

transform matrix because the autocorrelation matrix is not circulant as it

was in the previous case of two-channel filters. Before the Gramm-Schmidt
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orthogonalization, the eigenvectors of the auto-covariance matrix are

u1 = [1, − 9

20
+

1

20

√
881, 1]T ,

u2 = [1, − 9

20
− 1

20

√
881, 1]T ,

u3 = [−1, 0, 1]T .

with corresponding eigenvalues

λ1 =
281

200
+

9

200

√
881 ≈ 2.74067,

λ2 =
19

100
= 0.19,

λ3 =
281

200
− 9

200

√
881 ≈ .06932 .

The Karhunen-Loève transform is:

UKLT =



.57079 .59024 .57079
−.70710 0. .70710
.41736 −.80722 .41736




and it diagonalizes the auto-covariance matrix Rxx(0). We note that the

Karhunen-Loève transform matrix is not a discrete Fourier transform matrix as

it was the case for two channels and that is because the autocorrelation matrix

is not circulant anymore – it is just Toeplitz. The coding gain corresponding

to the Karhunen-Loève transform as defined in Equation (3.13) is:

GcodingKLT = 3.02573. The output variances are

σ2vk(·) =
1

2π

∫ 2π

0

[E(eiω, ·)Sxx(eiω)E†(eiω, ·)]kkdω (4.19)
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and they satisfy

σ2vk(α, β, φ, θ, ψ) = σ2vk(α, β + π, φ, θ, ψ) , (4.20)

σ2vk(α, β, φ, θ, ψ) = σ2vk(α + π, β, φ, θ, ψ + π) , (4.21)

k = 0, 1, 2 .

The sum of the output variances is constant 3. The output variances and

the coding gain are C∞ trigonometric polynomials in five arguments. The

maximum value of the coding gain does not depend on the order

E(z, ·) = V (z, ·)U (·) or E(z, ·) = U (·)V (z, ·). We determine the output

variances and the coding gain as follows:

1. use a symbolic computation package to integrate symbolically Equation

(4.19); the output variances are now functions of the angles α, β, θ, φ,

and ψ

2. use numerical methods to calculate the variances.

The results are in the next table:

α β φ θ ψ Gcod Gcomp Comment
3.0257 2.7406 KLT gain

0.3620 0.3324 6.3065 0.7745 2.4886 3.4355 2.7978 Max Gcod
1.2446 0.2971 0.5826 4.4324 2.5306 3.2907 2.7984 Max Gcomp

Table 4.3: Coding and compaction gain values

There are other values of the arguments where the maximum com-

paction gain and the maximum coding gain are attained as shown by Equa-

tions (4.20) and here we list the first ones found.
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The results show that there is a filter bank that renders a maximum

coding gain but the corresponding compaction gain is not maximized. The-

orem 3.3.3 on necessary and sufficient conditions for optimality prompts us

to investigate if the output power spectral density matrix given by Equation

(3.11) is diagonal. We check numerically and also analytically if the output

power spectral density matrix is diagonal. There is no value of the argument

ω ∈ [0, 2π] at which Svv(e
iω) is diagonal, therefore the filter we found to

render the maximum coding gain is not a maximum compaction gain filter.

However, this result does not contradict Theorem 4.6.1 on the existence of op-

timal finite impulse response filter banks , nor does it contradict the Definition

4.3.3 of principal component filter banks.

There are no principal component filter banks in the class of three-

channel finite impulse response orthonormal filter banks with autoregressive

AR(1) input signals.

This study is motivated by the results of Kirac and Vaidyanathan [62].

We correct their counterexample and support their conclusion. A careful read-

ing of [62] reveals that the example is set improperly: In the study the three-

dimensional unit norm vector used to construct the analysis polyphase matrix

is v = [cosα sinα 0]T . This choice of the vector reduces the study of a three

-channel filter bank to a two-dimensional problem. Indeed when we use their

vector for the construction of the generalized Householder matrix we observe

that one component of the output variance vector is constant. Here, we use

a proper representation of the unit norm vector (see Cheney and Light [26])

147



and determine analytically the output variance vector as a function of the ar-

guments α, β, φ, θ, ψ listed in Equations (4.18). In the end, however, we reach

the same conclusion as in [62]: there are no principal component filter banks

for finite impulse response three channel para-unitary filter banks of degree 1

with AR(1) input.

4.7.4 Algorithm outline

The existence of coding gain optimal finite impulse response filter banks

from Uµ,M is guaranteed by Theorem 4.6.1. In practice the complexity of

the design of such optimal filter banks depends on the input power spectral

density and the size of the desired filter bank: number of channels and the

McMillan degree. In Section 4.7.2 we found the coding gain optimal filter

bank analytically. We now describe such an algorithm and then discuss its

practicalities.

Suppose an input signal is given and the filters sought haveM channels

and McMillan degree µ. The coefficients of the filters are complex.

1. Determine the inputM×M power spectral density matrix as a function

of z = eiω, with ω in [0, 2π]. This can be a challenge: simple expressions

are desired but often the only option is the estimate of the periodogram.

2. Find a representation of the polyphase matrix E as a function of the

argument (z,θ) where z = eiω, ω ∈ [0, 2π] and θ is tuple of polar

coordinates that describe unit-norm vectors and unitary matrices.
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3. Integrate Equation 3.12 with respect to ω ∈ [0, 2π] The output variances

and the coding gain are functions of θ.

4. Determine the argument θ0 for which the maximum value of the coding

gain – or equivalently the minimum product of the output variances – is

attained. The argument θ0 describe the optimum filter bank.

In our study we carry all these steps analytically for two-channel filter

banks. We use the symbolic computation package from Maple. For small

size problems this method is recommended because it avoids the numerical

integration in Step 3. For the three-channel filter banks it was possible to

use the symbolic computation for Steps 1,2 and 3; we resort to numerical

evaluation of the coding gain in Step 4. The expression of the power spectral

density dictates if Step 3 can be computed symbolically.

We now discuss the number of polar coordinates used to parameterize

the polyphase matrix. Real filter banks are designed for most practical appli-

cations. For the representation of real unit norm vectors vk and the orthogonal

matrix U the total number of parameters that describe the polyphase matrix

E is

Nreal = µ(M − 1) +M(M − 1)/2 . (4.22)

For complex filters the number of polar coordinates is

Ncomplex = 2µ(M − 1) +M 2 + 1 . (4.23)

The matrix U is complex unitary and a number of M 2 + 1 parameters are

required for its representation.
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Our study for M = 2 and M = 3 shows the parameterization for

real unit norm vectors and orthogonal matrices. For the implementation with

higher values of the number of channels M we refer to Cheney and Light [26],

Murnaghan [83] and Vaidyanathan [117].

One may argue that the algorithm has a limited area of applications in

the sense that it is suited for lower number of channels and/or low McMillan

degree; we emphasize that the two-channel filter bank is of great interest be-

cause the JPEG-2000 Standard admits only two-channel filter banks. A filter

with higher number of channels can be simulated by cascading two-channel fil-

ter banks. So the algorithm has its own significantly large area of applications

within the JPEG-2000 community.

4.8 Existence of Principal Component Filter Banks

4.8.1 Optimum compaction and principal component filter banks

Akkarakaran and Vaidyanathan [9] study the existence of principal

component filter banks from the perspective of majorization theory and con-

vex analysis and optimization. If it exists, a principal component filter bank

renders a maximum for any convex objective function of the output sub-band

variance.

Denote by S the output sub-band variance vectors from class C ⊂ U∞,M

of orthonormal filter banks and call S the search space. The analysis in [9]

focuses on the search space to draw results on the existence of principal com-

ponent filter banks for the class C of filter banks.
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The study is an excellent theoretical tool, if a principal component filter

bank exists for the class of filters considered. However, the very existence of

principal component filter banks for classes of finite impulse response filter

banks other than transform coders is still an unanswered question.

When principal component filter banks exist for a given class of or-

thonormal filter banks C the search space S has a special shape: it is a poly-

tope, i.e. a convex set generated by a finite set of vectors in S. Moreover,

the corners of the polytope are the sub-band variance vectors that majorize

all the other vectors in S. In fact, the components of the corners are formed

by permutations of one vector, corresponding to a principal component filter

bank – see Remark 4.3.3.

This leads to the “sequence of compaction filters algorithm”. The vec-

tor that majorizes the other vectors in the search space S is found as

1. Permute the vectors of S such that their components are ordered de-

creasingly.

2. Select the set S0 of vectors such that the first component is the largest

for all vectors in S. The existence of such maximal element can be shown

in a similar manner Theorem 4.6.1 is proved.

3. From S0 select the set S1 of vectors whose second component is the

largest.
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4. Continue selecting the sets Sk, k = 2, . . . ,M − 1 such that the k = 1st

component is the largest.

5. The set SM−1 has only one element by Remark 4.3.3 and that is the out-

put sub-and variance vector corresponding to the principal component

filter bank in C, if it exists.

The algorithm produces the maximal element with respect to the lexicographic

order of RM . The lexicographic order is a weaker criterion for the search of

a principal component filter bank. In [9] it is shown that the algorithm may

be sub-optimum in the absence of principal component filter banks. In the

study in Section 4.7.3 the sequence of compaction filters identifies the vector

corresponding to an optimum compaction gain filter bank for which the coding

gain is 3.29 dB; the maximum coding gain is 3.43 dB (see Table 4.3).

4.8.2 Discussion on the existence of principal component filter banks

The study of existence of principal component filter banks over classes

of orthonormal filter banks has three main ingredients: the input signal, the

number of channels and the type of filters considered.

The input. In the trivial case, for a white noise input, any orthonormal

filter bank is a principal component filter bank and there is no coding gain

advantage, i.e., the coding gain is 1 – see [118].

We continue with the study of nontrivial inputs. In order to have an

optimal filter bank – in the coding gain sense – the blocked input power spec-
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tral density matrix has to be diagonalized by the analysis polyphase matrix.

This diagonalization is always achieved by infinite impulse response filters (the

“peel-off” procedure in Theorem 3.3.3. However, in general it is not true that

a finite McMillan degree polyphase matrix diagonalizes the input power spec-

tral density matrix at each frequency. Our study with autoregressive AR(1)

signals shows that filters in U1,3 do not achieve this diagonalization. When

the power spectral density matrix is a polynomial, the Smith Form representa-

tion from Theorem 3.1.2 suggests that there might exist finite impulse response

principal component filter banks with more than two channels. This is a possi-

ble research direction. The problem of identifying signals whose blocked power

spectral density matrix is diagonalizable by finite impulse response filter banks

is still open.

For orthogonal transforms, there is always an optimal transform that

diagonalizes the auto-covariance input matrix namely the Karhunen-Loève

transform. However, only a Gaussian input guarantees optimality of the

Karhunen-Loève transform in a coding scheme.

The number of channels. Assume the input is non-trivial with inte-

grable power spectral density. For only one channel, a filter that is optimum

in the coding gain sense is also an optimum compaction, hence it is a princi-

pal component filter. The existence of such a filter is guaranteed by Theorem

4.6.1 for finite impulse response filters and by the Theorem 4.4.1 (the “peel-off”

procedure) for filters with unrestricted orders.
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1. Two channels.

We now discuss the class of filter banks with two channels. The sub-band

variance vector σ∗ = [σ2∗0 , σ
2
∗1
]T that is output from the coding gain optimal

filter bank guaranteed by Theorem 4.6.1 is also a principal component filter

bank because σ∗ is a maximal element in S ( R2+ with respect to the ma-

jorization relation. See Remark 4.3.3. In Section 4.7.2 it is shown that an

optimum compaction gain filter bank is also a coding gain optimal filter bank

– Equation 4.14. The coding gain of the Karhunen-Loève Transform is the

lowest among the gains from principal component filter banks – and our study

supports this assertion. The infinite impulse response principal component

filter bank renders the maximum coding gain because it is only the “peel-off”

procedure that realizes a diagonalization of the power spectral density ma-

trix at all frequencies, equivalent to realization of the minimum value of the

product of variances.

There exists a principal component filter bank in any class C ⊂ U∞,M

of filter that is optimal over the class C – but which one is the optimal filter

bank?

From Theorem 3.3.1 it follows that the higher the filter orders the

more statistics of the data are accounted for therefore a better decorrelation.

This proportionality of the coding gain with respect to the filter order is also

observed by Unser [115].

Note that the equivalence between majorization of sub-band spectra

and that of the sub-band variances is valid only for that filter bank that is
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optimal over the whole U∞,M and whose coding gain cannot be further in-

creased. For two channel finite impulse response filter banks, although there

is majorization of sub-band variances because the majorization relation is a

total order in R2+, there is no optimality in the sense of Theorem 3.3.3. By

Theorem 4.6.1, in any class C ⊂ U∞,M there exists a finite response filter bank

that is optimal over C but there is no spectral majorization because the coding

gain can be increased – as shown in the proof of Theorem 3.3.2. That optimal

filter bank for Uµ,M whose existence is guaranteed by Theorem 4.6.1 is also a

principal component filter bank and an optimum compaction filter bank.

2. More than two channels.

Consider now finite impulse response filter banks with more than two channels.

In order to attain coding gain optimality in the sense of Theorem 3.3.3, the

input power spectral density matrix has to be diagonalized by a such a filter

of low degree and we expect the input to be a special case. The requirements

of Theorem 3.3.3 on necessary and sufficient conditions for optimality and

the majorization of sub-band variances are obviously met for infinite impulse

response filters constructed with the “peel-off” procedure from Proposition

4.4.1; also those filters are principal component filter banks as well. In classes

of finite impulse response filter banks with more than two channels we agree

with the conclusion in [62] that in general principal component filter banks with

finite Macmillan degree do not exist. Our experiment for the three channel

case for the model autoregressive signal supports this claim.

The filters. There are classes of filter banks definitely without prin-
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cipal component filter banks like the class of discrete Fourier transforms and

cosine-modulated filter banks. The filters in these classes are derived from

a prototype filter and the “shape” of the filter cannot be preserved under

optimality constraints. See Akkarakaran and Vaidyanathan [9].

In the class of transform coders, which are finite impulse response filter

banks with zero McMillan degree, principal component filter banks always

exist and they are the Karhunen-Loève Transform of the input signal, for any

number of channels – under the constraint that the input is a wide sense

stationary Gaussian process.

In general, for more than two channels there are no principal component

filter banks unless the polyphase matrix is either constant or corresponds to

an ideal passband filter bank.

When the filter orders are not restricted the principal component filter

banks exist by the Theorem 3.4.1. And it is that filter bank that diagonalizes

the input power spectral density matrix and renders the maximum coding gain

over all filter banks in U∞,M .

4.9 Conclusion

The problem of existence of principal component filter banks for the

class Uµ,M ofM -channels finite impulse response orthonormal filter banks with

McMillan degree µ is still open for M > 2 and µ > 0.

There exist principal component filter banks for the class of memoryless
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filter banks (µ = 0), for the class of ideal filter banks and also for two-channel

filter banks. Our contribution to the existing theory is to prove that cod-

ing gain optimal finite impulse response filter banks exist. The JPEG-2000

Standard accepts only two-channel filter banks. The algorithm we provide

in Sections 4.7.4 and 4.7.2 for the construction of two-channel principal com-

ponent filter banks has a wide area of application. The optimal filter banks

we construct can be embedded into the JPEG-2000 for decorrelation in the

component direction of multicomponent images. Also, in other applications,

higher number of channels can be simulated by cascading these two-channel

filter banks [117]. The filters we propose are finite impulse response hence

they lead to compactly supported wavelets [31, 32, 24].

Our design of two-channel filter banks has the advantage that is simple

and does not resort to any model of the input data. The area of applicability

makes it valuable as a decorrelation tool for large collections of images.

From Equations (4.9) and (4.10) it follows that the Karhunen-Loève

transform which is the principal component filter bank in U0,M and the prin-

cipal component filter bank in U1,M do not differ by just a delay term. There-

fore, it is not possible to construct principal component filter banks by adding

memory to lower degree filter banks known to be optimal.

A suitable approach would be to find non-trivial classes of input statis-

tics for which there exist principal component filter banks. One decorrelation

method not yet deeply studied is via independent component analysis [64],

which overcomes first of all the constraint on the input to be Gaussian [51] for
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the class of orthogonal transforms.
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Chapter 5

Application to Remote Sensing Imagery

5.1 Introduction

In this last part of the thesis we show how the theoretical results pre-

sented in the previous chapters are employed in the processing and analysis of

hyper-spectral images.

A high level overview of the JPEG-2000 Standard and a description the

data used in experiments are first presented. We then show the performance of

transform coders and filter banks with McMillan degree 1. These filter banks

are principal component filter banks.

Pattern recognition and data exploitation techniques need not limit

remote sensing systems to lossless compression. Many common feature ex-

traction tasks are reliable on data that is compressed at very low bit rates

[86].

We conclude with a summary of results and present directions for future

research.
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5.2 The JPEG-2000 Standard

The new still image compression standard, JPEG-2000, is written with

explicit requirements for supporting coding and compression of multicompo-

nent imagery. The standard is equipped with a variety of options for transform-

ing and manipulating collections of image components (e.g., spectral bands).

A high level overview of the JPEG-2000 Standard is presented in Figure 5.1.

Component decorrelation transforms are followed by spatial wavelet trans-

forms, rate allocation and quantization, and binary arithmetic bit-plane encod-

ing. The compressed bit-streams are signaled in packets that can be ordered

according to a variety of possible priorities to support various progressive trans-

mission objectives. For instance, the initial portion of a truncated JPEG-2000

code-stream can always be decoded to yield an approximation of the image

represented by the full code-stream. This feature, known as an embedded code-

stream, enables multiple users to access the same compressed code-stream at

a variety of different levels of fidelity, which is useful in database applications.

A detailed technical presentation of the JPEG-2000 standard can be found in

Taubman and Marcellin [109]. In the experiments below, an AVIRIS hyper-

spectral image – described in Section 5.3 – is compressed and reconstructed

using JPEG-2000 at bit rates varying from 0.125 bits/pixel/band (bpppb) to

4 bpppb. Equivalently, the compression ratios vary from 4 to 128 (the data is

recorded at 16 bits/pixel/band). AVIRIS data is highly correlated along the

spectral axis, and we exploit this fact with 2 different component decorrelation

transforms. The fidelity of reconstructed images is quantified and reported as
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Figure 5.1: High level overview of JPEG-2000.

a function of bit rate.

For instance, one simple way of quantifying fidelity is to report the 3-

dimensional signal to noise ratio of a reconstructed image cube (“3-D SNR”),

where “truth” is given by the original, uncompressed image cube. Typical

rate-distortion performance for such measurements is shown in Figure 5.2.

The curves present 3-dimensional signal to noise ratio as a function of the bit

rate for 3 component transform options: no component decorrelation, wavelet

transform decorrelation, and Karhunen-Loève decorrelation (denoted “KLT”

in the figure). The other steps in the JPEG-2000 process were identical in all 3

cases. Observe how (non-adaptive) 9-7 wavelet transform decorrelation yields

a gain of around 10-12 dB on this particular image, while image-dependent

decorrelation produces around 15-20 dB of gain.
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Figure 5.2: 3-D SNR for the “Jasper Ridge” image.

5.3 Data Used in Experiments

The experiments are performed on Airborne Visible/InfraRed Imaging

Spectrometer (AVIRIS) hyper-spectral images. AVIRIS is a Jet Propulsion

Laboratory instrument that delivers calibrated images of the upwelling spectral

radiance in 224 contiguous spectral bands with wavelengths from 0.37340 µm

to 2.50326 µm with a spatial resolution varying from a few meters to 20 me-

ters. Each spectral component has 512 x 614 pixels with a sample precision of

16 bpppb [123, 122].

The “Jasper Ridge Scene” (Figure 5.3) is an image of a biological pre-

serve in California and it used in studies for monitoring seasonal vegetation

patterns.

The high correlation of hyper-spectral images allows us to assume wide

sense stationarity of these signals. In our applications we block them by a
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factor of 224 which is the number of spectral components.

5.4 Design of Two-channel Optimal Filter Banks

We seek the design of a two-channel filter bank with McMillan degree

1 that is optimal in the coding gain sense – and in the principal component

sense. Recall that any class Uµ,2 has principal component filter banks. We also

determine the optimum orthogonal transform and compare the coding gains

for filter banks with McMillan degree 0 (transform coders) and 1.

We depict a hyper-spectral cube from the Jasper Ridge scene. Denote

by r the number of rows, c number of columns of each two-dimensional image

and by b the number of spectral bands. We select

r = 35, c = 35, b = 224 .

The discrete signal for which we construct a filter banks has length

N = r × c× b = 277400 .

This signal is input to a two-channel signal-adapted principal component filter

bank.

The performance of this filter banks is expressed in terms of the output

variances v0 and v1. Recall the Equations (3.7) and (3.8) for the polyphase

analysis matrix:

E(z) = V (z)U

V (z) = I + (−1 + z−1)vvT , ‖v‖ = 1,
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Figure 5.3: The Jasper Ridge scene

where

v = [cosα sinα]T , α ∈ [0, 2π],

U =

[
cos θ sin θ
− sin θ cos θ

]
.

as in Section 4.7.2. The filters H0(·), H1(·) and the polyphase matrix are

related as [
H0(z)
H1(z)

]
= E(z2)

[
1
z−1

]
.

The polyphase matrix for the class of orthogonal transforms is

E(z) = U = constant

with U as previously defined.

The coding gain for both cases, orthogonal transform and filter banks

with memory is

Gcoding =
σ2v0

+ σ2v1

2
√
σ2v0

σ2v1
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where σ2v0
, σ2v1

are the output sub-band variances calculated as (see Section

1.2.2)

σ2vk =
1

2π

∫ 2π

0

Sxx(e
iω)|Hk(e

iω)|2 dω .

We estimate the power spectral density of the input signal using the Matlab

periodogram. The expressions of the filters are also generated using symbolic

computation and the output variances are calculated numerically using the

formula shown above. We estimate the power spectral density for the whole

signal of length N = 277400 and also by considering the signal a vector random

process of dimension 224, the number of spectral bands. The values of the

output sub-band variances are the same for both estimation method and this

is explained by the wide-sense stationarity of the hyper-spectral images.

We find that the optimal orthogonal transform with respect to the

coding gain is attained for U(θ) u π/4. This is the Karhunen-Loève transform

of a wide-sense stationary process – see Section 4.7.2. The maximum coding

gain for the class U0,2 of orthogonal transforms is 8.9684dB. For filter banks

with McMillan degree 1 the highest coding gain value of 11.3025 dB is rendered

by a filter described by the parameters α = 1.83, θ = 2.363. From the optimal

orthogonal transform to the optimal McMillan degree one filter bank there is

a net substantial increase in the coding gain of 2.334 dB.

5.5 Future Work

Principal component filter banks unify the theory on the optimality of

filter banks under explicitly stated criteria. Finite impulse response principal
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component filter banks do not exist for general classes of input; however this

remains an outstanding issue.

We address the issue of optimal coding gain filter banks and show that

in any finite impulse response class of orthonormal filter banks there exists a

coding gain optimal filter bank. On the practical side we provide an algorithm

for the design of coding gain optimal finite impulse response filter banks that

are signal-adapted for a large class of multicomponent images.

Coding gain optimality is a widely used metric for the performance of a

filter bank; for classes of filter banks and input signals without known principal

component filter banks, coding gain optimal filter banks are a good, practical

alternative. When the number of channels is two, these optimal signal-adapted

filter banks are also principal component filter banks; they can be embedded

into the JPEG-2000 Standard as a decorrelation tool, leading to an efficient

compression.

Our future work will address theoretical issues and applications. A few

possible directions are:

• Compare the performance of these filter banks with the performance

of the Karhunen-Loève transform for all 224 channels (spectral bands).

The cost of implementing a two-channel filter bank is significantly lower

than that for the 224-channel Karhunen-Loève transform which is.

• Address the implementation issue of these two-channel filter banks for

their embedding into the JPEG-2000 Standard. That involves the design
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of the lifting steps for the filter implementation [24, 13, 108] and full

automatizing of the process. In other words, it is desired to have as input

only the multicomponent image and design a black box to determine the

input statistics, two-channel principal component filter bank and lifting

steps and to filter the image.

• Research on the existence of particular classes classes of input that have

finite impulse response principal component filter banks. In particular

address this issue when the input power spectral density matrix is –

or can be approximated by – a low order polynomial so that a finite

impulse response polyphase matrix diagonalizes this polynomial matrix

[28, 76, 45].

• Perform a comprehensive statistical approach to the existence of classes

of input signals and filter banks for which principal component filter

banks exist.

• Perform pattern recognition and data exploitation studies on decorre-

lated (transformed) and compressed/reconstructed images using adap-

tive principal component filter banks.

Our contribution to the theory of existence of coding gain optimal finite

impulse response filter banks is a response to the quest for optimal filter banks

for classes of filter banks that do not have principal component ones. Theo-

retical studies with statistical tools will open new research directions in the
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existence and design of principal component filter banks and we will pursue

that path.
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